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Abstract— We present a nonlinear Lyapunov function based
small-gain theorem for analyzing input-to-state stability of
discrete-time large-scale systems. Motivated by the fact that
many feedback control laws lead to discontinuous closed loop
systems, we pose no continuity assumptions on the system
dynamics. For characterizing input-to-state stability in this
discontinuous setting, we utilize a recently introduced strong
implication-form ISS-Lyapunov function.

I. INTRODUCTION

Stability analysis and controller design of large-scale in-
terconnected nonlinear control systems can be very difficult.
A useful tool to this end are small-gain theorems, where
the large-scale system is split into subsystems, which can be
seperately analyzed and stability of the overall system can
be concluded from small-gain conditions. There are many
variants of small-gain theorems for continuous-time systems,
cf. [15], [14], [3]. Hybrid systems have been considered, too,
cf. [21], [19], [25].

In this paper we are interested in small-gain results guaran-
teeing input-to-state stability (ISS) of discrete-time systems,
which could also be representations of sampled continuous-
time systems for the sake of, e.g., numerical controller
design. More specifically, we are considering systems with
discontinuous dynamics. This is motivated by the fact that
many controller design techniques lead naturally to discon-
tinuous closed-loop dynamics, e.g. quantized feedback laws
[24], [8]. Typically the resulting Lyapunov functions are also
discontinuous. The same holds true for event based [1], [23]
or optimization based techniques like model predictive con-
trol (MPC) [9], which often leads to discontinuous feedback
laws and thus to a discontinuous closed-loop system.

For discrete time systems, first small gain theorems were
presented in [16], [20], [12] for the special case of two
interconnected systems. Nonlinear small-gain theorems for
discrete-time large-scale systems have been developed in
[13], [22], assuming continuous dynamics and the existence
of a continuous Lyapunov function. The small-gain theorem
in [4] does not require continuity, but does not consider
additional disturbance inputs on the system and thus yields
asymptotic stability rather than ISS.

In this paper we state a small-gain theorem which does not
depend on any type of continuity, based on ISS Lyapunov
functions in implication form. When proving small-gain
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results for discrete-time systems, it was already observed
that the Lyapunov function needs to fulfill additional con-
ditions, cf. [20], [21], [13], [22]. Here we utilize a strong
implication-form ISS-Lyapunov function for discontinuous
systems which has been proposed recently, cf. [7], yield-
ing a necessary and sufficient ISS characterization without
imposing any continuity assumptions. The key idea of this
strong implication-form is to require an additional bound on
the Lyapunov function increase also when the state is small
compared to the perturbation. In contrast to other papers in
which similar ideas were used before for deriving small-
gain theorems (like in [21], [22] for hybrid and continuous
discrete-time systems, respectively), here we follow [7] in
using different gains for the two implications, see Formulas
(5) and (6) or (8) and (9), below. One of the main results we
prove in this paper is the somewhat surprising observation
that it is the gain from the newly introduced implication
which is decisive for the small-gain condition.

In order to increase the flexibility of our approach, we
formulate all our results for input-to-state practical stability
(ISpS), i.e., the system is only required to have the input-to-
state stability (ISS) property outside a prespecified neighbor-
hood of the origin. This allows to apply our results also to
numerical approaches of nonlinear controller design relying
on Lyapunov functions, in which typically a neighborhood
of the equilibrium needs to be treated in a different way, cf.,
e.g., [10], [6], [11], [5].

Our paper is organized as follows. After introducing the
problem setting and notation in Section II, our main result is
formulated and proved in Section III. Section IV illustrates
the result by an example and Section V concludes the paper.
The appendix contains two auxiliary results.

II. NOTATION AND DEFINITIONS

We consider the discrete-time interconnected control sys-
tem

Σ : x(k + 1) = f(x(k), w(k))

=

 f1(x1(k), . . . , xn(k), w(k))
...

fñ(x1(k), . . . , xn(k), w(k))

 , (1)

k = 0, 1, . . . , with x ∈ X ⊂ Rn and w ∈ W ⊂ Rq and
f : X ×W → X . Infinite sequences of perturbation values
are denoted by w = (w0, w1, . . .) and the space of such
sequences with values wk ∈W is denoted byW . We assume
f(0, 0) = 0, write x0 for x(0) and denote the i-th subsystem
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xi(k + 1) = fi(x1(k), . . . , xn(k), w(k)), i = 1, . . . , ñ, by
Σi.

We make use of the following sets of comparison
functions: K = {γ : R≥0 → R≥0 | γ(0) =
0, γ is continuous and strictly increasing} and K∞ = {γ ∈
K | γ is unbounded}. A function β : R≥0 × R≥0 → R≥0
is of class KL, if it is of class K in the first argument and
strictly decreasing to zero in the second argument.

A very useful type of stability for nonlinear systems with
inputs is input-to-state stability, introduced in [26]. In order
to enlarge the applicability of our results, in this paper we
consider the practical version of it. This includes the classical
definition of input-to-state stability by setting δ to zero.

Definition 1: System (1) is called input-to-state practically
stable (ISpS) with respect to δ,∆w ∈ R≥0 on a set Y ⊂ X
if there exist β ∈ KL and γ ∈ K, such that the solutions of
the system satisfy

|x(k)| ≤ max {β(|x0|, k), γ(‖w‖∞), δ } ∀k ∈ N0 (2)

for all x0 ∈ Y , all w ∈ W with ‖w‖∞ ≤ ∆w.
For formulating an ISpS small-gain theorem, we need to

define ISpS of the subsystems Σi by treating the states of
the other subsystems Σj , j 6= i similar to the inputs, cf. [2].

Definition 2: The i-th subsystem Σi of (1) is called ISpS
for external and internal inputs with respect to δi,∆w ∈
R≥0, if there exist βi ∈ KL and γij ∈ K ∪ {0}, j ∈
1, . . . , n, γi,w ∈ K, such that the solutions of the system
satisfy

|xi(k)| ≤ max
{
βi(|xi(0)|, k),

max
j 6=i
{γij(‖xj‖∞)}, γi,w(‖w‖∞), δi

}
(3)

for all xi(0) ∈ Yi, all xj ∈ Yj , j 6= i, all w ∈ W with
‖w‖∞ ≤ ∆w and all k ∈ N0.

A very useful characterization of ISpS are the ISpS Lya-
punov functions, introduced in [27]. Here we base our anal-
ysis on the so-called implication form ISpS-Lyapunov func-
tion, which allows for a more direct derivation of the small-
gain theorem compared to the alternative dissipation form.
Since we consider discrete-time nonlinear systems without
any regularity assumptions on f , the classical implication-
form ISS Lyapunov function, cf., e.g., [17], is not sufficient.
Therefore, we use the strong implication-form ISS-Lyapunov
function, which was recently introduced in [7]. Corollary
4.4 in [7] states that system (1) is ISS if and only if there
exists a strong implication-form ISS-Lyapunov function. The
proof that the existence of a strong-implication form ISpS
Lyapunov function implies ISpS can be found in Theorem 6
in the Appendix.

Definition 3: A function V : X → R≥0 is called ISpS
Lyapunov function for system (1) on a sublevel set Y =
{x ∈ X |V (x) ≤ `} for some ` > 0 if there exist functions
α, α ∈ K∞, µ, µ̃ ∈ K, a positive definite function α, values
w ∈ R>0 ∪ {+∞} and ν, ν̃ ∈ R≥0 such that for all x ∈ Y
the inequalities and implications

α(‖x‖) ≤ V (x) ≤ α(‖x‖) (4)

and

V (x) ≥ max{µ(‖w‖∞), ν}
⇒ V (f(x,w))− V (x) ≤ −α(V (x)) (5)

V (x) < max{µ(‖w‖∞), ν}
⇒ V (f(x,w)) ≤ max{µ̃(‖w‖∞), ν̃} (6)

hold for all w ∈W with ‖w‖ ≤ w.
Note that the difference to the “classical” implication form
ISS Lyapunov function lies in the additional implication (6).
The usefulness of different functions µ, µ̃ and ν, ν̃ will be
shown in the example in Section IV. Similarly, we define
ISpS Lyapunov functions for the subsystems Σi.

Definition 4: A function Vi : Xi → R≥0 is called ISpS
Lyapunov function for the i-th subsystem Σi of (1) on
a sublevel set Yi = {x ∈ Xi |Vi(x) ≤ `i} for some
`i > 0 if there exist functions αi, αi ∈ K∞, µij , µ̃ij ∈
K ∪ {0}, µi, µ̃i ∈ K, a positive definite function αi, values
w ∈ R>0 and νi, ν̃i ∈ R≥0∪{+∞}, such that for all xi ∈ Yi
the inequalities and implications

αi(‖xi‖) ≤ Vi(xi) ≤ αi(‖xi‖) (7)

and

Vi(xi(k)) ≥ max{max
j 6=i
{µij(Vj(xj(k)))}, µi(‖w(k)‖∞), νi}

⇒ Vi(xi(k + 1))− Vi(xi(k)) ≤ −αi(Vi(xi(k)))
(8)

Vi(xi(k)) < max{max
j 6=i
{µij(Vj(xj(k)))}, µi(‖w(k)‖∞), νi}

⇒ Vi(xi(k + 1)) ≤ max
{

max
j 6=i
{µ̃ij(Vj(xj(k)))},

µ̃i(‖w(k)‖∞), ν̃i

}
(9)

hold for all w ∈W with ‖w‖ ≤ w.
The functions µij , µi, µ̃ij and µ̃i are called ISS Lyapunov

gains. Note that any influence of different inputs on a state is
described by µij , µi and µ̃ij , µ̃i. In the case of no influence
of xj on the states of Σi, i.e. fi is independent of xj , we set
µij ≡ 0 and µ̃ij ≡ 0. The gains µii and µ̃ii are never used
and may thus also be set to 0.

ISS Lyapunov functions in strong implication form, i.e.,
involving the additional implication (9), were used before
in a small-gain context in [21] and [22]. However, in these
references the gains µij and µ̃ij were chosen to be identical.
One of the main insights of this paper is, that rather than the
“classical” implication form gains µij the additional gains
µ̃ij are decisive for the small-gain condition.

For this reason, we define the gain matrix

Γ̃ := (µ̃ij)i,j=1,...,n . (10)

As in [2] we now define the following nonlinear map

Γ̃max : Rn≥0 → Rn≥0, s1
...
sn

 7→
 max{µ̃11(s1), . . . , µ̃1n(sn)}

...
max{µ̃n1(s1), . . . , µ̃nn(sn)}

 . (11)
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III. SMALL-GAIN THEOREM

In the following we present a Lyapunov-type nonlinear
small-gain theorem for interconnected systems of type (1).

Theorem 5: Consider the interconnected system (1),
where each of the subsystems Σi has an ISpS Lyapunov
function Vi according to Definition 4, and the corresponding
gain matrix Γ̃. Let a function ε ∈ K∞ be given, such that
Id − ε is positive definite. Assume there is a differentiable
function σ ∈ Kn∞, such that

Γ̃max(σ(r)) < σ(r) ∀r > 0 (12)

is satisfied, then an ISpS Lyapunov function for the overall
system on the sublevel set Y = Y1 × . . .× Yn is given by

V (x) = max
i=1,...,n

σ−1i (Vi(xi)) (13)

with

µ(r) = max
i

{
ε−1

(
σ−1i (µ̃i(r))

)}
, (14)

µ̃(r) = µ(r), (15)
ν = max

i

{
ε−1

(
σ−1i (νi)

)}
, (16)

ν̃ = ν (17)

and a suitable α.
Proof: Let V (x) be given by (13).

The existence of α, α is obvious since σi ∈ K∞ and Vi
are Lyapunov functions.

From the definition of V (x) in (13) we obtain

V (x(k + 1))− V (x(k))

= max
i
σ−1i (Vi(xi(k + 1)))−max

i
σ−1i (Vi(xi(k)))

= σ−1i1 (Vi1(xi1(k + 1)))− σ−1i2 (Vi2(xi2(k))), (18)

where i1 and i2 are the maximizing indices.
Before we start with the rest of the proof, note that

condition (12) yields the following

max
j
{σ−1i1 (µ̃i1j(Vj(xj(k))))}

= σ−1i1 (max{µ̃i11(V1(x1(k))), . . . , µ̃i1n(Vn(xn(k)))})

= σ−1i1

(
max{µ̃i11 ◦ σ1 ◦ σ−11 (V1(x1(k))), . . . ,

µ̃i1n ◦ σn ◦ σ−1n (Vn(xn(k)))}
)

(13)
≤ σ−1i1

(
max{µ̃i11 ◦ σ1 ◦ σ−1i2 (Vi2(xi2(k))), . . . ,

µ̃i1n ◦ σn ◦ σ−1i2 (Vi2(xi2(k)))}
)

= σ−1i1

(
max{µ̃i11 ◦ σ1(V (x(k))), . . . ,

µ̃i1n ◦ σn(V (x(k)))}
)

= σ−1i1

(
Γ̃max,i1(σ(V (x(k))))

)
(19)

(12)
< V (x(k)), (20)

where Γ̃max,i1 denotes the i1-th component of Γ̃max.

We want to prove (5) and (6) for V (x), therefore let x ∈
Y . To this end we consider two cases.

Case 1: Vi1(xi1(k)) <
max{max

j
{µi1j(Vj(xj(k)))}, µi1(‖w(k)‖∞), νi1}

According to (9) we get

(18) ≤ max
{

max
j
{σ−1i1 (µ̃i1j(Vj(xj(k))))},

σ−1i1 (µ̃i1(‖w(k)‖∞)), σ−1i1 (ν̃i1)
}
− σ−1i2 (Vi2(xi2(k))).

(21)

First we prove (5), i.e. (21) ≤ −α(V (x(k))), while we
assume

V (x(k)) ≥ max{µ(‖w(k)‖∞), ν} (22)

with µ from (14) and ν from (16).
We start by considering only the last part in the max-
imum of (21): max{σ−1i1 (µ̃i1(‖w(k)‖∞)), σ−1i1 (ν̃i1)} −
σ−1i2 (Vi2(xi2(k))).

If σ−1i2 (Vi2(xi2(k))) ≥
maxi

{
ε−1(σ−1i (µ̃i(‖w(k)‖∞))), ε−1

(
σ−1i (νi)

)}
, we

derive

ε ◦ σ−1i2 (Vi2(xi2(k)))− σ−1i2 (Vi2(xi2(k)))

≥ max
i

{
σ−1i (µ̃i(‖w(k)‖∞)), σ−1i (νi)

}
− σ−1i2 (Vi2(xi2(k)))

⇔ −(Id− ε) ◦ σ−1i2 (Vi2(xi2(k)))

≥ max
i

{
σ−1i (µ̃i(‖w(k)‖∞)), σ−1i (νi)

}
− σ−1i2 (Vi2(xi2(k))).

Since V (x(k)) = σ−1i2 (Vi2(xi2(k))) ≥
maxi

{
ε−1 ◦ (σ−1i (µ̃i(‖w(k)‖∞))), ε−1

(
σ−1i (νi)

)}
=

max{µ(‖w(k)‖∞), ν} it follows that

max{σ−1i1 (µ̃i1(‖w(k)‖∞)), σ−1i1 (ν̃i1)} − σ−1i2 (Vi2(xi2(k)))

≤max
i

{
σ−1i (µ̃i(‖w(k)‖∞)), σ−1i (ν̃i)

}
−σ−1i2 (Vi2(xi2(k)))

≤ −(Id− ε)V (x(k)) (23)

and thus (5) is proven for this part of the maximum.
Next we want to find an upper bound for the first term

in the maximum of (21): max
j
{σ−1i1 (µ̃i1j(Vj(xj(k))))} −

σ−1i2 (Vi2(xi2(k))).

Choosing ᾰ(r) : = r − maxi

{
σ−1i

(
Γ̃max,i(σ(r))

)}
yields the desired result:

max
j

{
σ−1i1 (µ̃i1j(Vj(xj(k))))

}
− σ−1i2 (Vi2(xi2(k)))

(19)
≤ σ−1i1

(
Γ̃max,i1(σ(V (x(k))))

)
− V (x(k))

≤ max
i

{
σ−1i

(
Γ̃max,i(σ(V (x(k))))

)}
− V (x(k))

= −ᾰ(V (x(k))), (24)

where ᾰ is positive definite because of (12).
Finally we prove (6). Assume therefore

V (x(k)) < max{µ(‖w(k)‖∞), ν}. (25)
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Thus

V (x(k + 1)) = σ−1i1 (Vi1(xi1(k + 1)))

(9)
≤ max{max

j
{σ−1i1 (µ̃i1j(Vj(xj)))},

σ−1i1 (µ̃i1(‖w(k)‖∞)), σ−1i1 (ν̃i1)}
(20)
< max{V (x(k)), σ−1i1 (µ̃i1(‖w(k)‖∞)), σ−1i1 (ν̃i1)}

(25)
< max{µ(‖w(k)‖∞), ν, σ−1i1 (µ̃i1(‖w(k)‖∞)), σ−1i1 (ν̃i1)}

(14)
≤

(16)
max

{
max
i

{
ε−1

(
σ−1i (µ̃i(‖w(k)‖∞))

)}
,

ε−1
(
σ−1i (νi)

)
,max

i

{
σ−1i (µ̃i(‖w(k)‖∞)), σ−1i (νi)

}}
ε−1>id
≤

(14),(16)
max{µ(‖w(k)‖∞), ν}, (26)

and therefore (6) holds with µ̃(r) = µ(r) and ν̃ = ν.
Case 2: Vi1(xi1(k)) ≥

max{max
j
{µi1j(Vj(xj(k)))}, µi1(‖w(k)‖∞), νi1}

We start again by proving (5). Because of (8) it holds that

Vi1(xi1(k + 1)) ≤ (Id− αi1)(Vi1(xi1(k))), (27)

and therefore

(18)
(27)
≤ σ−1i1 ◦ (Id− αi1)(Vi1(xi1(k)))− σ−1i2 (Vi2(xi2(k))).

(28)
Note that (Id−αi1) is positive definite since αi1 is positive
definite and Vi1(xi1(k + 1)) > 0, Vi1(xi1(k)) > 0.

(28) can be bounded with help of Lemma 8 with
ρ1(s) = maxi{σ−1i (s)}, ρ2(r) = maxi{σ−1i (r)}, s =
Vi1(xi1(k)), r = Vi2(xi2(k)) and α = αi1 :

(28)
(44)
≤ −ά

(
max
i

(
σ−1i (Vi2(xi2(k)))

))
= −ά

(
σ−1i2 (Vi2(xi2(k))

) (13)
= −ά(V (x(k))). (29)

Therefore (5) holds and we need to show (6).
If V (x(k)) < max{µ(‖w(k)‖∞), ν}, (29) yields

V (x(k + 1)) ≤ V (x(k))− ά(V (x(k)))

≤ V (x(k))

< max{µ(‖w(k)‖∞), ν} (30)

and thus we have shown (6), ending case 2.
Combining both cases we get (5) for

V (x(k)) ≥ max{µ(‖w(k)‖∞), ν} (31)

from (29), (24) and (23) with α(r) : = min{ά(r), ᾰ(r), (Id−
ε)(r)}, µ(r) = max

i

{
ε−1

(
σ−1i (µ̃i(r))

)}
and ν =

maxi
{
ε−1

(
σ−1i (νi)

)}
.

(26) and (30) yield (6) for

V (x(k)) < max{µ(‖w(k)‖∞), ν} (32)

with µ̃(r) = µ(r) and ν̃ = ν.

IV. EXAMPLE

Consider the nonlinear system inspired by [4]

x1(k + 1) =
x22(k)

2(1 + x22(k))
+ w1(k)

x2(k + 1) =
3

8
x1(k)− 1

8
x2(k)− w2(k),

(33)

where w is a disturbance on the system with states x1, x2.
The first subsystem is described by the first component of the
system and the second subsystem by the second component.

We show that Vi(r) = |r| is a Lyapunov function for each
subsystem, starting with the first subsystem. Let µ12(s) =
3s2

2+2s2 and µ1(s) = 3s. First we show (5), therefore assume

|x1(k)| ≥ max{µ12(|x2(k)|), µ1(|w1(k)|)}. (34)

We obtain∣∣∣∣ x22(k)

2 + 2x22(k)
+ w1(k)

∣∣∣∣− |x1(k)|

≤ max

{
x22(k)

1 + x22(k)
, 2|w1(k)|

}
− |x1(k)|

(34)
≤ 2

3
|x1(k)| − |x1(k)|

≤ −1

3
|x1(k)|.

Thus (5) holds with α1(s) = 1
3s.

Now, assuming |x1(k)| < max{µ12(|x2(k)|), µ1(|w1(k)|)},
we get ∣∣∣∣ x22(k)

2 + 2x22(k)
+ w1(k)

∣∣∣∣
≤ max

{
x22(k)

1 + x22(k)
, 2w1(k)

}
≤ max{µ̃12(|x2(k)|), µ̃1(|w1(k)|)}

with µ̃12(s) = s2

1+s2 and µ̃1(s) = 2s, proving (6). Hence
V1(r) = |r| is a Lyapunov function for the first subsystem.

We proceed the same way with the second subsystem. Let
µ21(s) = 0.9s and µ2(s) = 2.4s and assume

|x2(k)| ≥ max{µ21(|x1(k)|), µ2(|w2(k)|)}, (35)

then∣∣∣∣38x1(k)− 1

8
x2(k)− w2(k)

∣∣∣∣− |x2(k)|

≤ max

{
3

4
|x1(k)|, 2|w2(k)|

}
− 7

8
|x2(k)|

(35)
≤ 5

6
|x2(k)| − 7

8
|x2(k)|

≤ − 1

24
|x2(k)|,

which yields (5) with α2(s) = 1
24s.

Assuming

|x2(k)| < max{µ21(|x1(k)|), µ2(|w2(k)|)} (36)
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leads to∣∣∣∣38x1(k)− 1

8
x2(k)− w2(k)

∣∣∣∣
≤ 3

8
|x1(k)|+ 1

8
|x2(k)|+ |w2(k)|

(36)
≤ 3

8
|x1(k)|+ 1

8
max

{
9

10
|x1(k)|, 12

5
|w2(k)|

}
+ |w2(k)|

≤ max

{
39

80
|x1(k)|, 12

40
|w2(k)|+ 3

8
|x1(k)|

}
+ |w2(k)|

≤ max

{
39

80
|x1(k)|+ |w2(k)|, 52

40
|w2(k)|+ 3

8
|x1(k)|

}
≤ max

{
39

40
|x1(k)|, 2|w2(k)|, 52

20
|w2(k)|, 3

4
|x1(k)|

}
≤ max

{
39

40
|x1(k)|, 13

5
|w2(k)|

}
≤ max{µ̃21(|x1(k)|), µ̃2(|w2(k)|},

with µ̃21(s) = 39
40s and µ̃2(s) = 13

5 s. Thus V2(r) = |r| is a
Lyapunov function for the second subsystem.

In order to apply Theorem 5, we have the vector Γ̃max

Γ̃max(s) =

(
s22

1+s22
39
40s1

)
and need to find a function σ ∈ K2

∞, such that (12) is
satisfied. Let

σ(r) =

(
r
r

)
,

then

Γ̃max(σ(r)) =

(
r2

1+r2
39
40r

)
<

( |r|
2
r

)
≤
(
r
r

)
for all r > 0. Thus Theorem 5 yields V (x(k)) =
max{|x1(k)|, |x2(k)|} as Lyapunov function of the overall
system, with

µ(r) = max{ε−1(2r), ε−1(2.6r)}
= ε−1(2.6r)

= µ̃(r),

where ε ∈ K∞, such that Id− ε−1 is positive definite.
We note that in this example µ̃21◦µ̃12 ≤ 3

4µ21◦µ12 holds,
hence the small-gain conditions via µ̃ij is less conservative
than the condition via the “classical” gains µij .

V. CONCLUSIONS

We have presented a nonlinear small-gain theorem for
discontinuous and input-to-state practically stable (ISpS)
large scale discrete-time systems. The theorem is based
on ISpS Lyapunov functions in strong implication form
introduced and shown to be equivalent to ISpS in [7].
Besides providing a rigorous Lyapunov function based small-
gain based stability theorem for discontinuous discrete-time
systems, the main insight gained from our analysis is that
the decisive gains for concluding stability are the gains µ̃ij
newly introduced in the strong implication form and not the
“classical” gains µij .

APPENDIX

In this appendix we first prove that the existence of a
strong-implication form ISpS-Lyapunov function implies that
the system is ISpS. This is stated in Theorem 6 which extends
the suffiency part of Corollary 4 in [7] to the practical setting
and can also be seen as an extension of [10, Theorem 10]
to the strong implication form. Afterwards, we prove an
auxiliary lemma which we need in Case 2 of the proof of
Theorem 5.

Theorem 6: Consider system (1) and assume that the
system admits an ISpS Lyapunov function V . Then the
system is ISpS on Y with

δ = α−1 (max{ν, ν̃}) ,
γ(r) = α−1 (max{µ(r), µ̃(r)})

and ∆w = max{γ−1(α−1(`))}, provided δ ≤ α−1(`) holds.
For the proof of this theorem, first we state a helpful

Lemma, cf. [18, Lemma 4.3].
Lemma 7: Let y : N→ [0,∞), α ∈ K. If

y(k + 1)− y(k) ≤ −α(y(k)) (37)

for all 0 ≤ k < k1 for some k1 ≤ ∞, then there exists a
βα ∈ KL, such that

y(k) ≤ βα(y(0), k) ∀k < k1. (38)
Proof: [Proof of Theorem 6] We fix x0 ∈ Y , w ∈ W

and denote the corresponding trajectory of (1) by x(k). We
begin the proof by deriving estimates for V (x(k)) under
different assumptions. To this end, we distinguish three
different cases.

Case 1: Then (5) yields

V (x(k + 1))− V (x(k)) ≤ −α(V (x(k))). (39)

Note that x0 ∈ Y and the definition of Y implies x(k) ∈ Y
for all k = 0, . . . , k′ − 1, hence (5) may indeed be used
for all these k. Setting α̃ := α, Lemma 7 then yields the
existence of β̃ ∈ KL such that

V (x(k)) ≤ β̃(V (x0), k) for all k = 0, . . . , k′ − 1. (40)

Case 2: Let k ∈ N be such that V (x(k)) <
max{µ(‖w‖∞), ν}. Then (6) yields

V (x(k + 1)) < max{µ̃(‖w‖∞), ν̃}. (41)

Case 3: Let k ∈ N be such that V (x(k)) <
max{µ̃(‖w‖∞), ν̃}. Then we either have V (x(k)) <
max{µ(‖w‖∞), ν} and thus Case 2 implies V (x(k+ 1)) <
max{µ̃(‖w‖∞), ν̃}.

Otherwise, we have V (x(k)) ≥ max{µ(‖w‖∞), ν} and
(5) yields

V (x(k + 1)) ≤ V (x(k)) < max{µ̃(‖w‖∞), ν̃}.

Thus, in either case we get V (x(k + 1)) <
max{µ̃(‖w‖∞), ν̃}.

Combining these three cases we can now prove the desired
inequality (2):
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Let k′ ∈ N be maximal such that the condition from Case
1 is satisfied. Then, for all k = 0, . . . , k′ we get

‖x(k)‖
(4)
≤ α−1(V (x(k)))

(40)
≤ α−1(βα̃(V (x0), k))
(4)
≤ α−1(βα̃(α(‖x0‖), k))

=: β(‖x0‖, k) (42)

Now, for all k ≥ k′ by induction we show the inequality

V (x(k)) ≤ max{µ(‖w‖∞), µ̃(‖w‖∞), ν, ν̃}. (43)

Note that the bounds on δ and ∆w in the assertion ensure
that (43) implies V (x(k)) ≤ ` and thus x(k) ∈ Y for all
w ∈ W with ‖w‖∞ ≤ ∆w. Hence, (43) implies that one
of the Cases 1–3 must hold for x(k). Consequently, if we
know that (43) holds we can use the estimates in the Cases
1–3 in order to conclude an inequality for x(k + 1).

To start the induction at k = k′, note that the maximality
of k′ implies V (x(k)) < max{µ(‖w‖∞), ν} by the condi-
tion of Case 1, thus yielding (43).

For the induction step k → k + 1, assume that (43) holds
for x(k). Then, either Case 1 holds implying V (x(k+1)) ≤
V (x(k)) and thus (43) for x(k + 1). Otherwise, one of the
Cases 2, 3 must hold for x(k) which also implies (43) for
x(k + 1).

Together, (42) and (43) show that either ‖x(k)‖ ≤
β(‖x0‖, k) or ‖x(k)‖ ≤ max{γ(‖w‖∞), δ} holds, which
shows the desired ISpS inequality (2).

The following lemma is needed in Case 2 of the proof of
Theorem 5 and is proved similarly to [20, Lemma 6.3].

Lemma 8: Suppose that we are given two differentiable
functions ρ1, ρ2 ∈ K∞, where ρ′1(s) is a positive function,
and a positive definite function α, such that Id−α is positive
definite. Then we can write

max
0≤ρ1(s)≤ρ2(r)

ρ1 ◦ (Id− α)(s)− ρ2(r) ≤ −ά ◦ ρ2(r), (44)

for some positive definite function ά and all r ≥ 0.
Proof:

If 0 ≤ ρ1(s) ≤ ρ2(r)
2 , it follows that

ρ1 ◦ (Id− α)(s)− ρ2(r) ≤ ρ1(s)− ρ2(r) ≤ −ρ2(r)

2
. (45)

Let ρ1(s) ∈
[
ρ2(r)

2 , ρ2(r)
]
. Applying the Mean Value

Theorem yields the existence of s∗ ∈ ((Id− α)(s), s), such
that

(ρ1)
′
(s∗) =

ρ1 ◦ (Id− α)(s)− ρ1(s)

−α(s)
. (46)

Thus

ρ1 ◦ (Id− α1)(s)− ρ2(r)

≤ max
ρ2(r)

2 ≤ρ1(s)≤ρ2(r)
ρ1 ◦ (Id− α)(s)− ρ1(s)

(46)
= (ρ1)

′
(s∗)[−α(s)]

Using [20, Lemma 6.3], there exist two functions q1 ∈
K∞, q2 ∈ L, such that

− (ρ1)
′
(s∗)[α(s)] ≤ −q1(s∗)q2(s∗)α(s)

≤ −q1 ◦ (Id− α)(s) · q2(s) · α(s)

=: −α∗(s),

where α∗ is a positive definite function. Applying [20,
Lemma 6.3] a second time and the fact that s ∈[
ρ−11

(
ρ2(r)

2

)
, ρ−11 (ρ2(r)

]
yields the existence of q∗1 ∈ K∞

and q∗2 ∈ L, such that

−α∗(s) ≤ −q∗1(s) · q∗2(s)

≤ −q∗1 ◦ ρ−11

(
ρ2(r)

2

)
· q2 ◦ ρ−11 (ρ2(r))

=: −α◦ (ρ2(r))

Together with (45) this yields (44) with ά(r): =
min

{
1
2r, α

◦(r)
}

.
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[24] D. Nešić and D. Liberzon, “A unified framework for design and
analysis of networked and quantized control systems.” IEEE Trans.
Automat. Contr., vol. 54, no. 4, pp. 732–747, 2009.
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