Abstract—Coding theory and the theory of finite projective spaces, also called Galois geometries, are closely linked to each other. A large variety of problems in coding theory can be retranslated into equivalent problems on specific substructures of finite projective spaces. These latter links include functional codes and projective Reed-Muller codes. This talk presents recent results on functional codes and projective Reed-Muller codes, and presents the main ideas and techniques which led to these new results.

Keywords: Functional codes, Projective Reed-Muller codes, Algebraic varieties, Quadrics

AMS MSC 2010: 05B25, 51E20, 94B05

I. INTRODUCTION

Consider the finite projective space $\text{PG}(N, q)$ of dimension N over the finite field \mathbb{F}_q of order q [9], [10].

These finite projective spaces and their substructures are first of all investigated for their geometrical interest. But they are also investigated because of their links to other research areas, such as Coding Theory. These links include the equivalence between linear MDS codes and arcs in finite projective spaces, the equivalence between linear codes meeting the Griesmer bound and minihyperplanes, and the equivalence between covering codes and saturating sets in finite projective spaces [12].

But also a large variety of linear codes exist whose definition arises from well-defined substructures of finite projective spaces. Via the incidence matrices of points and k-spaces of $\text{PG}(N, q)$, it is possible to define the generator matrix or the parity check matrix of a linear code C [1].

Also, variations on this theme of using projective spaces to define linear codes occur. These include functional codes and projective Reed-Muller codes [3], [4].

Via geometrical methods, properties of these linear codes are derived. In this way, finite projective spaces contribute in various ways to coding theory.

In this talk, we will present a number of these results, thereby also showing which geometrical ideas are used to obtain these results.

II. FUNCTIONAL CODES FROM A VARIETY AND A QUADRIC

Functional codes were introduced in [11]. In [2], [6], [7], [8], new results on functional codes linked to quadrics and to Hermitian varieties have been obtained. The next step is to investigate functional codes linked to other algebraic varieties.

The research of [4] continues this way. A first natural generalization is to investigate functional codes arising from the intersection of a given non-singular quadric Q_N with all algebraic varieties of degree $h \geq 3$.

Let Q_N be a non-singular quadric variety of $\text{PG}(N, q)$, $N \geq 6$, $q > 9$. Let $Q_N = \{P_1, \ldots, P_n\}$, where we normalize the coordinates of these points P_i with respect to the leftmost non-zero coordinate. Let F_h be the set of all homogeneous polynomials $f(X_0, \ldots, X_N)$, of degree h, defined by $N + 1$ variables over the finite field \mathbb{F}_q. The functional code $C_h(Q_N)$ is the linear code

$$C_h(Q_N) = \{(f(P_1), \ldots, f(P_n))| f \in F_h \cup \{0\}\}.$$

The main problem is to determine the minimum distance d of $C_h(Q_N)$, one of its fundamental parameters. Since this code is linear, its minimum distance corresponds to its minimum weight. The small weight codewords arise from the algebraic varieties of degree h having the largest intersections with Q_N.

D. Bartoli and L. Storme investigated the problem of the minimum weight of $C_h(Q_N)$, with $h \geq 3$, via geometrical arguments.

For small h, they proved in [4] that the largest intersections of a non-singular quadric Q_N in $\text{PG}(N, q)$, $N \geq 6$, $q > 9$, with the algebraic varieties of degree h are equal to the union of h quadric varieties of dimension $N - 2$.

This is proven in the following way. By Bézout’s theorem, a non-singular quadric Q_N in $\text{PG}(N, q)$, $N \geq 6$, $q > 9$, and an algebraic variety of degree h intersect in an algebraic variety of degree $2h$ and dimension $N - 2$. Results by Căpătă and Matera [5] give bounds on the number of points in algebraic varieties. These bounds enable to determine that for the small weight codewords of the functional code $C_h(Q_N)$, this intersection of degree $2h$ and dimension $N - 2$ is the intersection of Q_N with an algebraic variety of degree h equal to the union of h hyperplanes. This important information implies that we can even obtain extra results: the largest intersections arise from the intersection of Q_N with the union of h hyperplanes passing through a common $(N - 2)$-space.

III. PROJECTIVE REED-MULLER CODES

Let $\theta_n = (q^{n+1} - 1)/(q - 1)$.

Consider the set $F_q[X_0, \ldots, X_n]_d \cup \{0\}$ of all homogeneous polynomials of degree d over the finite field \mathbb{F}_q of order q in the $n + 1$ variables X_0, \ldots, X_n. Consider also the n-dimensional projective space $\text{PG}(n, q)$ over the finite field
of order \(q \), and order the points \(P_0, \ldots, P_{\theta n-1} \) of \(\text{PG}(n,q) \) in a certain way, where we normalize the coordinates of the points \(P_i \) by making the leftmost non-zero coordinate equal to one.

Then the \(d \)-th order \(q \)-ary projective Reed-Muller code \(\text{PRM}(q,d,n) \) is the image of the map

\[
\Phi : \mathbb{F}_q[X_0, \ldots, X_n]_d \cup \{0\} \rightarrow \mathbb{F}_q^n \\
F(X_0, \ldots, X_n) \mapsto (F(P_0), \ldots, F(P_{\theta n-1})).
\]

The non-zero codewords of minimum weight of \(\text{PRM}(q,d,n) \) correspond to the algebraic hypersurfaces of degree \(d \) having the largest number of points.

For \(d \leq q - 1 \), it is known from results of Sboui that they correspond to the algebraic hypersurfaces which are the union of \(d \) hyperplanes passing through a common \((n-2)\)-dimensional subspace of \(\text{PG}(n,q) \) [13].

Other results of Sboui include that if \(q > d(d-1)/2 \), then any algebraic hypersurface of degree \(d \), not the union of \(d \) hyperplanes, contains less points than any algebraic hypersurface which is the union of \(d \) hyperplanes.

D. Bartoli, A. Sboui, and L. Storme continued the study of Sboui for \(d < \sqrt[4]{q} \). They determined results related to the question how many points an algebraic curve (resp. an algebraic hypersurface) over a finite field can have, depending on its number of lines (resp. hyperplanes).

In [3], they obtained the following results.

Theorem 1: Let \(c \) be a non-zero codeword of the \(d \)-th order \(q \)-ary projective Reed-Muller code \(\text{PRM}(q,d,n) \), \(d < \sqrt[4]{q} \), of weight

\[w(c) < q^n - \left(\frac{r + d - 4}{2} \right) q^{n-1} \]

\[- (d + \sqrt{d} - r q^{n-3} - (d - r + 2 \sqrt{q}) \theta_{n-4} - \frac{r - d}{2}, \]

when \(d - r + 1 \) is odd,

\[w(c) < q^n - \left(\frac{d + r - 3}{2} \right) q^{n-1}, \]

\[- \left(\frac{d + r - 1}{2} + d + 1 - r \right) q^{n-2} \]

\[- \left(\frac{3d - 3r + 3}{2} \right) q^{n-3} - (d - r + 1) \theta_{n-4}, \]

when \(d - r + 1 \) is even,

then \(c \) corresponds to an algebraic hypersurface of degree \(d \) in \(\text{PG}(n,q) \), containing at least \(r \) hyperplanes.

The main techniques involved the following arguments.

First of all, a detailed study of the number of points in \(\text{PG}(2,q) \), belonging to an algebraic plane curve of degree \(d \), \(d \) small, was performed. Using the Hasse-Weil bound, this led to the following result.

Lemma 1: Let \(C \) be an algebraic plane curve of degree \(d \) in the projective plane \(\text{PG}(2,q) \), such that \(2 \leq d < \sqrt[4]{q} \) and \(q > 13 \). If \(C \) contains at most \(r \) different lines, then \(\#C \leq B_r \), where

\[
B_r = \left\{ \begin{array}{ll}
\left(\frac{d + r}{2} \right) q + \frac{d - r + 1}{2}, & d - r \text{ even}, \\
\left(\frac{d + r - 1}{2} \right) q + 2 \sqrt{q} + \frac{d - r + 1}{2}, & d - r \text{ odd}.
\end{array} \right.
\]

A second argument involved the lines of an absolutely irreducible algebraic hypersurface \(\Phi \) of degree \(d \), \(d \) small, in \(\text{PG}(n,q) \), passing through a non-singular point \(P \) of \(\Phi \). These lines are all contained in the tangent hyperplane in \(P \) to \(\Phi \).

Using upper bounds on the number of points on an algebraic hypersurface in \(\text{PG}(n-2,q) \), the combination of the arguments implied upper bounds on the number of points of algebraic hypersurfaces of degree \(d < \sqrt[8]{q} \) in \(\text{PG}(n,q) \), containing exactly \(r - 1 \) hyperplanes.

Theorem 2: Let \(\Phi \) be an algebraic hypersurface of degree \(d < \sqrt[8]{q} \) in \(\text{PG}(n,q) \), containing exactly \(r - 1 \) hyperplanes, then

\[
|\Phi| \leq \left(\frac{r + d - 2}{2} \right) q^{n-1} \]

\[+ (d + \sqrt{d} - r q^{n-3} + (d - r + 2 \sqrt{q}) \theta_{n-4} + \frac{r - d}{2}, \]

when \(d - r + 1 \) is odd,

\[
|\Phi| \leq \left(\frac{d + r - 1}{2} \right) q^{n-1} \]

\[+ \left(\frac{d + r - 1}{2} + d + 2 - r \right) q^{n-2} + \left(\frac{3d - 3r + 5}{2} \right) q^{n-3} + (d - r + 2) \theta_{n-4}, \]

when \(d - r + 1 \) is even.

These bounds then implied the corresponding results for the weights of the codewords of the \(d \)-th order \(q \)-ary projective Reed-Muller code \(\text{PRM}(q,d,n) \) of Theorem 1.

REFERENCES

