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Abstract— This paper addresses the problem of robustly
reconstructing network structure from input-output data. Pre-
vious work identified necessary and sufficient conditions for
network reconstruction of LTI systems, assuming perfect mea-
surements (no noise) and perfect system identification. This
paper assumes that the previously identified necessary and
sufficient conditions for network reconstruction are satisfied but
here we additionally take into account noise and unmodelled
dynamics (including nonlinearities). In order to identify the
network structure that generated the data, we compute the
smallest distances between the measured data and the data that
would have been generated by particular Boolean networks.
By striking a compromise between such distance and network
complexity, we provide methods for revealing the correct
network structure from data despite the presence of noise and
nonlinearities.

I. INTRODUCTION

The challenges faced by the network reconstruction prob-
lem [1] come from the necessity to deal with noisy and
partial measurements (in particular, the number of hid-
den/unobservable nodes and their position in the network
is unknown) taken from a nonlinear and stochastic network.
Even in the ideal situation where the underlying network is
assumed to be linear and time-invariant (LTI) and the mea-
surements are assumed to be non-noisy, it can be shown that,
due to partial observability, this problem is unsolvable using
classical system identification techniques [2]. In particular,
identification of the system transfer function (obtained, for
example, using system identification approaches) is useless
to solve the network structure reconstruction problem since
transfer functions do not contain sufficient information for
that purpose.

Based on this latter observation, a new representation
for LTI systems, called dynamical structure functions was
introduced in [2]. Dynamical structure functions capture
information at an intermediate level between transfer func-
tion and state space representation. Specifically, dynamical
structure functions not only encode structural information
at the measurement level, but also contain some informa-
tion about hidden states. Based on the theoretical results
presented in [2], we proposed an experimental guideline
for the design of an experimental data-acquisition protocol
which allows the collection of data containing sufficient
information for the network structure reconstruction problem
to become solvable. In the particular case of biological
network reconstruction, we have shown that if nothing is
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known about the network a priori (i.e., if we consider a black
box network structure reconstruction problem), then the data-
collection experiments must be performed as follows:

1) for a network composed of p measured species, the
same number of experiments p must be performed;

2) each experiment must independently control a mea-
sured species, i.e., control input i must first affect
measured species i.

If the experiments are not performed in this way the network
cannot be reconstructed based on the corresponding input-
output measurements, and any network structure fits the
data equally well (e.g. a fully decoupled network or a fully
connected network). If a priori information about the network
is available (i.e., if we consider a grey box network structure
reconstruction problem), as is usually the case, then these
conditions can be relaxed as explained in [2].

The main contribution of this paper is to propose an effi-
cient algorithm for reconstructing the network structure best
fitting noisy input-output data. In particular, the proposed
network reconstruction method is designed to be robust with
respect to noise and dynamic uncertainties (such as unmod-
elled nonlinearities). In the rest of the paper, we assume that
the conditions for network reconstruction presented above in
(1) and (2) are satisfied.

Our method uses the same type of information as sys-
tem identification methods, i.e., input-output measurements.
However, contrary to what can be done with a direct applica-
tion of classical system identification methods, steady-state
(resp. time-series data) can here be used to reconstruct the
Boolean (resp. dynamical network) structure of the system.

The structure of the paper is as follows. In Section I-B, we
give a simple example which shows that direct system iden-
tification from input-output data does not allow the recon-
struction of the network structure when hidden/unobservable
states are presented. In Section II, dynamical structure
functions are defined and fundamental results concerning
their usefulness in the network reconstruction problem are
stated. Section III presents the main results of the paper, i.e.,
robust network reconstruction from input-output data in the
presence of noise and nonlinearities. Finally, we conclude the
paper with some discussions and future work in Section IV.

A. Notation

For a matrix A, Aij denotes the element in the ith row
and jth column while Aj denotes its jth column. For a
column vector α, α[i] denotes its ith element. We define
eT
r = [0, . . . , 0, 1rth , 0, . . . , 0] ∈ R1×N . I denotes the

identity matrix of appropriate dimension.
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Fig. 1. The same transfer function yields two minimal realisations with very
different network structures: decoupled internal structure (left) and coupled
internal structure (right). Measured species are depicted by red circles
while hidden species correspond to blue circles. The complete biochemical
network, reflected in each state space realisation, is shown on top; on the
bottom are the networks between measured species only. Blue and red
arrows represent transfer functions and include the dynamics corresponding
to hidden states.

B. Motivating example

Consider a linear time-invariant system from which partial,
non-noisy input-output measurements are obtained. Using
system identification, a transfer function describing the input-
output behaviour of this system can be obtained. However,
in the partial observation case, network reconstruction is
not possible with no further information. To illustrate this,
assume that the transfer function obtained from input-output
data (e.g., using classical systems identification methods) is
given by:

G(s) =
1

s+ 3

[ 1
s+1

1
s+2

]
.

It can be shown that this transfer function is consistent with
two state-space realisations ẋ = Ax + Bu, y = Cx with
very different internal structures, i.e.,

A1 =

 −1 0 1
0 −2 1
0 0 −3

 , A2 =

 −2 −1 1
−1 −3 1

0 −1 −1

 ,
B1 = B2 = [0 0 1]T , and C1 = C2 = [I 0] ∈ R2×3 (i.e.,
the third state is hidden/non-observable). The networks in
Figure 1 correspond to each of the indicated realisations of
G(s) (the (A1, B1, C1) realisation (resp. the (A2, B2, C2) re-
alisation) corresponds to the left column (resp. right column)
of Figure 1). Note that both realisations are minimal. This
demonstrates that even in the idealised setting (LTI dynamics,
non noisy data), network reconstruction in the presence of
hidden/unobservable states is not possible without additional
information about the system.

To ease the notation, we omit the explicit dependence of
transfer functions on the Laplace variable s when this does
not lead to confusion. Thus write G instead of G(s) where
the explicit depence on s is clear from the context.

II. DYNAMICAL STRUCTURE FUNCTIONS AND NETWORK
RECONSTRUCTION

In [2] we introduced the notion of dynamical structure
functions and showed how they can be used to obtain nec-
essary and sufficient conditions for network reconstruction.
For the sake of clarity and completeness, we state these
previously obtained results here without proofs. We refer the
interested reader to [2] for the corresponding proofs.

Consider a nonlinear system ˙̄x = f(x̄, ū, w1), ȳ =
h(x̄, w2) with p measured states ȳ, hidden states z̄ (poten-
tially a large number of them), m inputs ū, and noise w1, w2.
The system is linearised around an equilibrium point (a point
such that f(x̄∗, ū∗, 0) = 0), and it is assumed that inputs and
noise do not move the states too far from the equilibrium
point so that the linearised system is a valid approximation
of the original nonlinear system. The linearised system can
be written as ẋ = Ax + Bu, y = Cx, where x = x̄ − x̄∗,
u = ū − ū∗ and y = h(x̄, 0) − h(x̄∗, 0). The transfer
function associated with this linearised system is given by
G(s) = C(sI −A)−1B.

Partition the linearised system as follows[
ẏ
ż

]
=

[
A11 A12

A21 A22

] [
y
z

]
+
[
B1

B2

]
u

y =
[
I 0

] [ y
z

] (1)

where x = [yT zT ]T ∈ Rn, is the full state vector, y ∈ Rp

is a partial measurement of the state (we assume p > 1), z
are the n − p “hidden” states, and u ∈ Rm is the control
input. We restrict our attention to situations where output
measurements constitute partial state information, i.e., p < n.
Taking the Laplace transforms of the signals in (1), solving
for Z, and substituting it into the Laplace transform of the
first equation of yields sY = WY +V U , where W = A11 +
A12 (sI −A22)−1

A21 and V = A12 (sI −A22)−1
B2 +B1.

Let D be the matrix composed of the diagonal elements
of W and write (sI −D)Y = (W −D)Y + V U . Then
Y = QY + PU where

Q = (sI −D)−1 (W −D) and P = (sI −D)−1
V (2)

Given the system (1), we define the dynamical structure
function of the system to be (Q,P ), where Q and P are
the internal structure function and control structure function,
respectively, and given as in (2). If all the measured states
are removed from the system except for Yi and Yj then
the transfer function Qij corresponds to the exact transfer
function between Yj (considered as input) and Yi (considered
as output). The same holds for P in terms of Uj and Yi.

It can be shown that G = (I −Q)−1
P (see [2]). Based

on this latter relation, it can be shown that the dynamical
structure function of a system contains more information than
the transfer function, and less information than the state-
space representation. We can then conclude that, with no
other information about the system, dynamical or Boolean
reconstruction is not possible. Moreover, for any internal
structure Q there is a dynamical structure function (Q,P )
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that is consistent with G, i.e. that satisfies G = (I −Q)−1
P .

In particular, this shows that the use of criteria such as
sparsity or decoupledness to guide our selection of a proposal
network structure can be misleading. If one were to optimise
for decoupledness, for example, a dynamical structure (0, G)
could and would always be found, regardless of the true
underlying structure. Thus, if we are to use these kinds of
criteria, they must be firmly justified a priori.

Proposition 1: Given a p×m transfer function G, dynam-
ical structure reconstruction is possible from partial structure
information if and only if p− 1 elements in each column of[
Q P

]T
are known that uniquely specify the component of

(Q,P ) in the nullspace of
[
GT I

]
.

The importance of this result is that it identifies exactly what
information about a system’s structure, beyond knowledge of
its transfer function, must be obtained to be able to recover
the structure without appeal to a priori assumptions, such
as sparsity, or parsimony, etc. This enables the design of
experiments targeting precisely the extra information needed
for reconstruction. In particular when p = m and G is
full rank, we observe that imposing that P is diagonal, i.e.,
that each input controls a measured state independently, is
sufficient for reconstruction.

Corollary 1: If m = p, G is full rank, and there is no a
priori information about the internal structure of the system,
Q, then the dynamical structure can be reconstructed if each
input controls a measured state independently, i.e., if, without
loss of generality, the inputs can be numbered such that P is
diagonal. Moreover, H = G−1 characterises the dynamical
structure as follows

Qij = −Hij

Hii
and Pii =

1
Hii

. (3)

III. ROBUST NETWORK STRUCTURE RECONSTRUCTION

In this section, we consider the problem of robustly re-
constructing dynamical network structures. Data are obtained
from input-output measurements of a noisy nonlinear system.
From this type of data we aim to find the internal network
structure Q associated with the linearised system (1).

For simplicity of exposition, we assume that there is no a
priori information on the internal network structure Q. The
results still follow if some a priori information about Q is
available, and such information can typically be used to relax
the experimental protocol according to Proposition 1. Hence,
data are collected according to the measurement protocol
described in the introduction:
(1) the number of distinct data-collection experiments is the
same as the number of measured species. This in particular
implies that u(t), y(t) ∈ Rp ;
(2) each input ui controls first the measured state yi so that
P is a diagonal matrix (p × p). To average out the noise,
data-collection experiments are repeated N times.

In the following sections, we propose two approaches
for estimating the dynamical structure function (Q,P ) from
measured input-output data. The first approach is indirect
and involves estimating the transfer function G while the

second approach relies on the solution of a direct op-
timisation problem. More precisely, in the first approach
(see Figure 2 (a)), for each experiment i we first estimate
Gi(s) (i.e., the ith column of G(s)) using standard system
identification tools [6]. In a second step, the dynamical
structure function (Q(s), P (s)) is computed from the esti-
mated transfer function G(s). Since information is lost in the
process of estimating G(s), we later we consider the case
where (Q(s), P (s)) is directly estimated from data (without
estimating first G(s), see Figure 2 (b)).

Dynamical 
Struct. Fun. 

(Q,P)

I/O data 

(a)

(b)

System 
Identification

Transfer 
Function GI/O data 

Direct 
Optimisation

Dynamical 
Struct. Fun. 

(Q,P)

Fig. 2. Two approaches to obtain dynamical structure functions.

Concerning the type of input-output data collected, we
first assume the case of time-series input-output data. We
then consider the special case where only steady-state data
are available.

A. Dynamical network reconstruction from identified trans-
fer functions

In this section, we describe a first method relying on sys-
tem identification. This method allow us to obtain dynamical
structure functions from a transfer function identified using
measured time-series data (see Figure 2 (a)).

Consider a transfer matrix G(s) estimated from noisy data.
According to Corollary 1, if G is full rank there is a unique
Q and diagonal P satisfying (I − Q)G = P . Since G
is an approximation of the actual system, Q and P will
typically be mere approximations of the actual Q and P .
Moreover, due to noise and unmodelled dynamics, it is likely
that Q does not even have the correct Boolean structure.
Typically, the internal structure function Q obtained from
such a procedure will be fully connected, i.e., all non-
diagonal elements of Q will be non-zero.

The main idea to solve the network reconstruction problem
from noisy data is the following. For p measured states, Q
has p2 − p unknowns. We want to quantify the distance
from G (or directly from the measured data) to all possible
Boolean structures (and there are 2p2−p of them). Some of
such distances will be large revealing that the corresponding
Boolean structures are likely not the correct structures while
other will be small making them candidates for the correct
structure.

To make the notion of distance rigorous, consider a
Boolean mapping from a transfer matrix to a Boolean matrix
in Definition 1 and a particular Boolean structure Bk in
Definition 2.

Definition 1: A Boolean mapping b : Q(s) → b(Q),
where b(Q) is a Boolean matrix with the same dimension
as transfer matrix Q and ∀i, j {b(Q)}i,j = 0 if and only if
Qij(s) = 0 for all s, otherwise, {b(Q)}i,j = 1.
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For a given p, there are 2p2−p possible Boolean networks
Bk (remember that Q(s) has zeros on the diagonal and
therefore b(Q) will always have zeros on the diagonal) which
can be ordered using the index k = 1, ..., 2p2−p.

Definition 2: A Boolean structure Bk corresponding to a
Boolean network Bk is defined as follows: {Q(s) : b(Q) =
Bk}.

The distance from G to the Boolean structure Bk is defined
as the smallest perturbation ∆ to G (measured in some norm)
so that the perturbed system G∆ belongs to the set of transfer
functions G̃ such that Q ∈ Bk, where Q is obtained from
(I − Q)G̃ = P . Finding the distance from G to a Boolean
structure Bk, gives us a quantitative information about how
much we would need to perturb G (or the data) to obtain
a new system transfer function for which the associated Q
corresponds to the considered Boolean structure, i.e., for
which Q ∈ Bk.

There are many possible approaches to define such “small-
est perturbations”, including several uncertainty models and
norms to choose from. This choice is key to obtain a convex
minimisation problem. For example, additive, multiplicative
or uncertainty in the coprime factors all lead to non-convex
minimisation problems. In order to obtain a convex min-
imisation problem, we consider the output (could also be
input) feedback uncertainty model. In this framework, the
“true” system is given by (I + ∆)−1G, where ∆ represents
unmodelled dynamics, including nonlinearities, and noise.

Based on this choice of dynamic uncertainty, the problem
is defined as follows. Given a particular Boolean structure
Bk, the objective is to minimise ‖∆‖, in some norm, such
that Q obtained from (I + ∆)−1G = (I − Q)−1P has the
desired Boolean structure, i.e. Q ∈ Bk. All Pii are also free
(remember that, by assumption, P is diagonal).

We can rewrite the above equation as ∆ = GP−1(I −
Q)−I . So, we are looking to minimise ‖GP−1(I−Q)−I‖
over Q ∈ Bk and P diagonal. Since P is diagonal, its inverse
P−1 is also diagonal.

Define a new matrix X = P−1(I −Q) whose diagonal is
the diagonal of P−1 and for which the off diagonal elements
are given by P−1

ii Qij . Since Q ∈ Bk this imposes structural
constraints on X , i.e., some off-diagonal Xij = 0. These
zero Xij correspond to those Qij which are equal to zero
(since Xij = P−1

ii Qij for i 6= j).
Definition 3: For all k, define Xk , {X(s) : b(X) =

Bk + Ip}, where Ip is identity matrix of dimension p.
Remark 1: Definition 3 implies the following facts:
(i) when i 6= j, Xij(s) = 0 for all the Boolean structures
Bk in Definition 2 which are such that Bk[i, j] = 0;
all other Xij(s) are free variables;

(ii) when i = j, Xii(s) is a free variable.
Using Defintion 3, the distance from G to a particular

Boolean structure Bk can be written as

αk = inf
X∈Xk

‖GX − I‖2

which is a convex minimisation problem with a careful
choice of a norm.

Remark 2: In this optimisation problem, X(s) ∈ Xk

approximates the inverse of G as “close” as possible. If Xk

corresponds to the fully connected Boolean network then the
solution to this optimisation is exactly X = G−1.

Next, we show that this problem can be casted as a least
squares optimisation problem. If we use the norm defined
by ‖∆‖2 = sum of all ‖∆ij‖22, where ‖ · ‖2 stands as the
L2-norm over s = jω, then using the projection theorem [9]
the problem reduces to

αk = inf
X∈Xk

‖GX − I‖2 = inf
X∈Xk

∑
i

‖GXi − ei‖22

=
∑

i

inf
Yi

‖AiYi − ei‖22

=
∑

i

‖Ai(A∗iAi)−1A∗i ei − ei‖22,

where Xi is the ith column of X ∈ Xk, Yi is a column
vector composed by the free (i.e., nonzero) elements of Xi,
Ai is obtained by deleting the jth column of G when the
corresponding element Xi(j) is 0 for all j, and (·)∗ denotes
transpose conjugate. The infimum is achieved by choosing
Xi = (A∗iAi)−1A∗i ei, and A∗iAi is always invertible since
G is full rank in Corollary 1. After obtaining all the αk for
all k, the optimal distance

α = min
k
αk.

If experiments are repeated N times (as they should) and
we obtain a transfer function Gi for each experiment, then
the above analysis still follows simply by forming a higher
dimensional matrix G = [GT

1 · · · GT
N ]T .

Penalising connections: The above methodology suffers
from a crucial weakness: there are several Boolean structures
with distances smaller or equal than the distance to the “true”
network. Indeed, the extra degrees of freedom of the fully-
connected network allow the corresponding distance αk to
be the smallest of all. This is similar to the noisy data over-
fitting problem encountered in system identification where
the higher the order of the transfer function, the better the fit.
Obviously, if we only focus on noisy data best fit, eventually
we end up fitting noise and so a large system order is not
typically a good choice. Therefore, a compromise has to be
struck.

If the true network has l non-existent connections (l off-
diagonal elements in Q are zero) and the data are non-
noisy, then there are 2l − 1 different networks that have
a smaller or equal distance (due to the additional degrees
of freedom provided by the extra connections). When noise
is present, then the “true” network will typically have an
optimal distance similar to these other l networks. The
question of how to find the “true” network thus arises.
With repeated experiments, small enough noise (i.e., large
enough signal-to-noise ratio) and negligible nonlinearities,
the optimal distances of those l networks are comparable,
and they are typically much smaller than those of the other
networks. To try to reveal the “true” network, one can
strike a compromise between network complexity (in terms
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of number of connections) and data fitness by penalising
extra connections. The are several methods to strike this
compromise. Here, we introduce methods known as Akaike’s
information criterion (AIC) [4], or some of its variants such
as AICc (which is AIC with a second order correction for
small sample sizes), and the Bayesian information criterion
(BIC).

The AIC-type approach is a test between models - a tool
for model selection. Given a data set, several competing
models may be ranked according to their AIC value, with
the one having the lowest AIC being the best. From the AIC
value one may typically infer that the best models are in a
tie and the rest are far worse, but it would be arbitrary to
assign a value above which a given model is rejected [10].
The AIC value in our case for a particular Boolean network
Bk is defined as:

AICk = 2Lk − lnαk, (4)

where Lk is number of (non-zero) connections in the Boolean
network Bk and αk is the optimal distance based on this
parameter constraint.

Although finding the optimal distance in the second term
of eq. (4) can be done efficiently, the number of Boolean
networks 2p2−p grows very fast with the number of measured
states p. To find the network with the smallest distance it
is thus not desirable to compute the optimal distance for
each possible Boolean network. Fortunately, there are ways
to reduce the number of networks that need to be considered.
As we saw in the previous section infX∈Xk

‖GX − I‖2 =∑
i infYi

‖AiYi − ei‖22 meaning that we can solve each
optimisation problem separately. Since each Yi corresponds
to p − 1 unknowns in the ith row of Q, this reduces
the problem to solving p2p−1 optimal distances. Finding a
polynomial-time algorithm to compute the optimal distance
through this method is a subject of current investigation.

B. Dynamical network reconstruction directly from time-
series data

The previous sections used a two-step approach in which
system identification was first used to estimate a transfer
function from measured input-output data and then, in a
second step, the identified transfer function was used to
obtain a dynamical structure function representation of the
system which is optimal in terms of a particular metric. This
section proposes a method which allows identification of the
optimal dynamical structure function representation directly
from the measured input output data (see Figure 2 (b)).
The advantage of this direct network structure reconstruction
from data is that no information is lost during the initial
transfer function identification stage.

Due to the equivalence between dynamical uncertainty
perturbations, we are free to chose, without loss of generality,
the type of uncertainty perturbation that best suits our needs.
For the direct method, instead of a feedback uncertainty
as was considered in the previous section, the uncertainty
perturbation we are considering here is the additive dynamic
uncertainty on the output, i.e., Y = G∆(U + ∆). In this

case, we think about the “distance” in terms of how much
we need to change the input (data) to fit a particular Boolean
structure. Since G∆ = (I − Q)−1P = X−1, the equality
Y = G∆(U + ∆) can be written as

∆ = XY − U,

where X ∈ Xk, for some particular Boolean network
k. Recall that structural constraints in Q can be imposed
directly on X from the equality X = P−1(I − Q). We
can therefore use system identification theory for non-causal
autoregression models under the structural constraints to
identify X (which might be non-causal). In this case, the
distance is defined as the maximum likelihood of the esti-
mation problem.

Reconstruction with the zero norm: Taking the number
of connections into account, we formulate the optimisation
problem as follows:

inf
X∈Xk

(
‖XY − U‖2 + β‖X‖0

)
, (5)

where β is a parameter balancing data-fitting and model
complexity (i.e., the number of non-zero connections). In
(5), ‖X‖0 denotes the number of nonzero element in the
matrix X , and it is known as the zero norm. Notice that this
minimisation problem can be equivalently written as:

inf
X∈Xk

(
‖XY − U‖2 + β‖X‖0

)
=
∑

i

inf
Xi

(
‖XT

i Y − UT
i ‖22 + β‖XT

i ‖0
)
, (6)

where XT
i is the ith row of X ∈ Xk and UT

i is the ith row
of U . Directly solving this problem is in general NP-hard.
A frequently discussed approximation is to replace the zero
norm with the 1-norm to obtain a convex problem. Moreover,
since there are p independent optimisations in eq. (6), we can
choose different βi for each i. Alas, there is no clear rule
for selecting βi to balance optimally the two terms in eq. (6)
[5]. The choice of βi is currently under investigation.

C. Boolean network reconstruction from steady-state data

So far we have assumed that time-series data are available.
Frequently, however, experimentation costs and limited re-
sources only permit steady-state measurements. In addition,
with steady-state measurements it is typically possible to
perform a larger number of experiments for the same time,
effort and cost. As shown below, most of the connectivity of
the network together with the associated steady-state gains
(and the associated positive or negative sign) can still be
reconstructed from steady-state date. However, no dynamical
information will be obtainable. In other words, for most cases
we can still recover the Boolean network from steady-state
data.

Assume that after some time of maintaining the control in-
put concentrations at a constant value, the measured outputs
y have converged to a steady-state value. This is equivalent
(if the system is stable or quasi-stable [1]) to assume that we
can obtain G0 = G(0), i.e., G(s) evaluated at s = 0. If Q0 =
Q(0) and P0 = P (0), then (I−Q(s))G(s) = P (s) evaluated
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at s = 0 becomes (I −Q0)G0 = P0. From this equation, all
of the results given in Section III-A and III-B follow provided
that no element of G(s) has a system zero [3] at 0. In that
case, a nonzero element in the obtained Boolean network
indicates the existence of a causal relationship between the
corresponding pair of nodes while a zero element indicates
the absence of such relationship.

IV. DISCUSSION, CONCLUSION AND FUTURE WORK

The main contribution of this paper is to propose an
efficient method for reconstructing from noisy input-output
data the network structure responsible for the generation of
these data. In particular, the proposed network reconstruction
method is designed to be robust with respect to noise and
dynamic uncertainties (such as unmodelled nonlinearities).
The proposed network structure reconstruction method ex-
plicitly takes into account the dynamics of hidden states
without assuming knowledge of their number or location
in the network. The key idea underlying our results is to
find minimal distances between the existent data and the
data that would have been required to obtain particular
network structures. The smallest of these distances then
allows to identify the (or a set of) network candidate(s) that
most likely would be responsible for these data. The results
are obtained using the newly-defined concept of dynamical
structure functions.

As a first step, the proposed method has been designed
for Linear Time-Invariant systems and therefore has limi-
tations when applied to nonlinear or time-variant systems.
However, when applied to the reconstruction of various
linearisations of time-invariant nonlinear models given in
the literature ([7],[8]), we observed that, using our method,
network reconstruction was always possible provided the
signal-to-noise ratio of the measured data was sufficiently
large. In future works, we plan to extend the proposed
network reconstruction approach to nonlinear, time-invariant,
and delayed networked systems.
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