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Stability Analysis of Discrete-Time Systems with Time-Varying Delays via
Integral Quadratic Constraints

Chung-Yao Kao

Abstract— This manuscript presents certain lz-gain proper- IQC analysis to analyze robust stability of time-varying
ties of and the integral quadratic constraint characterizations delay systems is to characterize the time-varying delay
derived from these properties for the discrete-time time-varying operator in terms of integral quadratic constraints. With the

operator. These 1QC characterizations are crucial for the o . " .
IQC analysis to be applied to study robustness of discrete- IQC characterization, stability conditions can be straightfor-

time systems in the presence of time-varying delays. One new Wardly obtained following the 1QC stability theorem [8].
contribution of this manuscript is to utilize the information of  In [5] several IQCs were derived for discrete-time time-

the variation of the delay parameter to derive less conservative varying delay operators. It is found that, in terms of energy
IQCs. The effectiveness of the proposed IQC analysis is verified 5 hjification, the discrete-time time-varying delay opera-
by numerical experiments, the results of which are compared tor h ’ distinct feat dto it fi
with those recently published in the literature. F’r as some distinc e"’} ures compare ) 0 1S c.:on In.uous-
time counterpart. In particular, for the discrete-time time-
I. INTRODUCTION varying operator, as long as the delay sequence is upper

The content of this manuscript concerns robust stabilitpounded, the energy amplification ratio (i.e.; thegain)

analysis of discrete-time systems with time-varying delay$ always bounded regardless of the variation of the delay
in the following forms: sequence. This is distinctly different from its continuous-

time counterpart in that th&€,-gain depends only on the
[k +1] = Az[k] + Agz[k — 7[k]] 1) variation of the delay parameter and the gain becomes
+ A(z[k], z[k — T[k]]) + elk] unbounded when the variation of the delay parameter exceeds
one. For the discrete-time case, it was unclear whether and
how the variation of the delay sequence affects tgain
r?f the discrete-time time-varying delay operator, and how

the space of all finite-energy signals (the space). The to effectively utilize the information on the variation of
delay sequence is an unknown function where only the the delay sequence in robustness analysis of discrete-time
bounds on its value and/or variation are available to us. THYStems with time-varying delays. In this manuscript, we

robust stability problem in question is to verify whetherCONtinué our endeavor in [5]. We will focus on making the
under any finite-energy disturbance inpytthe energy of link between the variation of the delay sequence and the

signal = remains finite for all admissible delay sequence&:92in of the time-varying delay operator, which hopefully
satisfying the given conditions. will lead to better IQC characterizations of the operator and
Most existing results in the literature for time-varyingless conservative criteria for verifying varying-time-delay

delay robustness were developed in time domain based B} ustness of discrete-ti_me systems. Numerit_:gl experi.ments
the Lyapunov stability theorem — in which certain formWwill be condyqted to verify the proposgd stability criteria.

of Lyapunov-Krasovskii functional candidates are used to "€ rémaining part of the manuscript evolves along the

derive stability conditions (see, for example, [1], [2], [3], [4],followmg line. The ne_xt sect_lon |ntr0duce§ the main notation

[7], [9], [10], [11], [12]). The form of Lyapunov functions is @"d the 1QC analysis applied to checking very-time-delay

often tied to the formulation of systems under consideratiofiPPustness of linear time-invariant discrete-time systems.
As such, it is often non-trivial to generalize the resul©ection Il presents the IQCs for the time-varying delay

for other systems with similar but slightly different forms OPerator we so far discovered. Stability criteria resulting from

because the generalization involves modification of the forfl€S€ IQC characterizations are presented in Section [V. The
of the Lyapunov function, which might not be easy to Coméesults of the numerical experiments conducted to verify
up with. the effectiveness of the proposed stability criteria are pre-

In contrast to the Lyapunov approach, in [6] and [5] Wesented in Section V. Finally, we make a concluding remark

proposed to tackle time-varying delay robustness promerﬁgmm_arizing_ the current state of our work and what to be
via a frequency-domain approach called Integral Quadratigvestigated in the future.

Constraint (IQC) analysis. The crucial step of applying the II. NOTATIONS AND PRELIMINARIES
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wheren-dimensional signak is the signal of interestk is
a finite-energy disturbance} and A; € R™*™ are constant
matrices, andA(-,-) is a causal and bounded operator o
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respectively. The notatiol > 0 (“>","<”, and “<”, where the time-varying delay sequencés upper bounded
respectively) is used to denote positive definiteness (positiby 7 but otherwise unknown. We assume that- A, is
semi-definiteness, negative definiteness, and negative sestable (i.e., all eigenvalues ol + A, are strictly inside
definiteness, respectively). Symbdl* denotes the space the unit circle), which is a necessary condition for stability.
of R™-valued, square summable functions defined on tim€he system can be equivalently expressed as the feedback
interval (—oo, 00), and#3? denotes the extension of the spaceénterconnection
3", which consists of functions whose time truncation lies

in 3" Notatioanf;m is used to denote the space of proper

rational transfer matrices (of dimensiér m) with no poles  where G is a LTI DT stable system with transfer function
on the unit circle, whileRh'X™ denotes the subspace ofrepresentationG(z) = — (21 — (A + Ag)) 144 ande =
RI1.X™ consisting of functions which have no poles outside_;f ¢ J,. We have the following stability theorem for

the open unit disk. Everyl € R1\™ defines a convolution (2) ‘which follows straightforwardly the general IQC theory
operator or: let i be the inverse Laplace transform Bt stated in [8].

Then for anyu € b,

r=Gw+e, w=S8zx 3)

Theorem 1. Consider system (2) and the equivalent trans-
formation (3). Suppose

(Hu)[k] := Y hlk = ull].
l=—o0 (i) S, satisfies IQC defined b := [

Given a signalf in the i, space, we usgf/|;, to denote the (i) II;; >0 andIly; <0;
I, norm of f. Given a bounded operat6¥ on thel, space, (iii) there exists: > 0 such that
we use||G||;, to denote thd, induced norm ofG. Gle7)

Let IT be a bounded LTI self-adjoint operator énspace. { I
ThenlII defines a quadratic form ok

IIy;  IIio|,
Iy, Il |’

TH(eJ‘“) [G(f“)} < el Vel <7 (@)

Then the feedback interconnection (3) is stable, and so is

o=l - £ (4] (o B

k=—00 Condition (4) is a frequency dependent, infinite dimen-
- /71' [@(jw)rn( oy {@(jw)} do sional Linear Matrix Inequality (LMI). Suppose thdt €
) [ (w) w(jw) Rl.. Then this matrix inequality can be converted into
) a frequency independent finite dimensional LMI using the
where © and @ are Fourier transforms of and w, re-

- ) .~ Kalman-Yakubovich- Popov (KYP) Lemma.
spectively. The operatadl is referred to as the multiplier  \te that any 1QC foD, immediately leads to an 1QC for
of the quadratic formy;. The multiplierIT is often block S,. For example, lets — S,v := v— D, v. ThatD, satisfies
partitioned into the form ' M, M ’ !

IQC defined byl := implies S, satisfies 1QC

17, 1I
1I 11 ) 12 22
i defined by the following multiplier
7, a2
. . . . 1I 1I I3 11 —(1I1 11
where the dimensions di;; are consistent with those of [ et o + o Tl —( 11%I+ 22)}
andw. — (I, + Il22) 22
Given an operator{ and a quadratic formr (v, w) 1. I NTEGRAL QUADRATIC CONSTRAINTS FORD, AND
defined onl, space, we said that/ satisfies the integral Sr
quadratic constraint defined by;, or more often # satisfies  |n this section, conically parameterized integral quadratic
IQC defined byll" to emphasize the multiplier involved, if constraint characterizations for operatdps and S, are
on (v, H(v)) = 0 for all v € b. derived, which are crucial for applying IQC analysis to
Let D, denote the time-delay operatdr;(v) := v[k —  systems with time-varying delays. To this end, we will first

7[k]], andS; be the “delay-difference” operatdd — D-); present somé,-gain properties of operato®®, andS,. To

i.e., 8- (v) := v[k] —v[k — 7[k]]. To simplify the notation, in facilitate the development, let us consider the following sets
the rest of the paper we will suppress the time dependengy discrete-time sequences

on 7[k] and simply write it asr.
In order for the readers who are not familiar with 1IQC Y1 :={s: s[k] € {Tom, T +1,---, Tns}, Vk}

analysis to appreciate the technical contents of the next Yo :={s:s[k] € {Tm,Tm+1,---,T;},
section, in the following we state a stability theorem ob- M-—1

tained by applying the IQC analysis to linear time-invariant Z |s[k +1+m] — s[k +m]| <d, Vk} )
(LTI) discrete-time (DT) systems with time-varying delays. m=0

Consider LTI DT systems with time-varying delays governegynere 17 is a positive integer, and,, T, and d are
by the following equation: non-negative integers satisfying< 7y — 7,, + 1. In the

2310



Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems — MTNS 2010« 5-9 July, 2010 - Budapest, Hungary

Proposition 1. Consider the time-varying delay operatbr. ~ Proposition 4. Consider the time-varying “delay-difference”
where the delay parametercould be any sequence frofh.  operator S, where the delay parameter could be any

Then the following characterization holds f6r.: sequence frorf';. Then the following characterization holds
for S;:
sup | D |li, = Vh. (5)
TEY
Furthermore, it can be shown that a unit impulse function ‘37 0~ < Tu, (10)
l2

and the following delay sequence

T ifk<T. wherez represent the forward shifting operator ané+ the
k] =k it 7. <k<Tas ) discrete-time integrator.
Tu it k>Ty Propositions 1 to 4 give rise to the following integral

. . quadratic constraints fab, and S;-.
realize the worst-casé-gain.

Proposition 5. Consider the time-varying delay operatbr.
where the delay parameter could be any sequence from
T,. Then the operato, satisfies any integral quadratic
constraint defined by

Proposition 2. Consider the time-varying delay operatbr.
where the delay parameter could be any sequence from
T4, in which it is further assumed that < M. Then the
following characterization holds fob, :

sup || D+, = vd + 1. 7 _ hX1 0
TE&II o =V ) I {0 _x, (11)

Furthermore, |F can be shown that a unit impulse funcuor\]/vhereXl — X! >0 is any positive semi-definite matrix.
and the following delay sequence

. Proposition 6. Consider the time-varying delay operator
T if k<7
D, where the delay parameter could be any sequence

Tlk] = { k if T <k <Tm+d (8) from Yo, in whichd < M - in other words, theM -step
Tm+d TE>T,+d average variation of- is strictly less than one for alt. Then
realize the worst-casé-gain. '([jhi_ opder:torDT satisfies any integral quadratic constraint
efined by
Remark 1. Given anyM > 1, let us define thé/-step total
variation, and M -step average variation of as n (d+1)X5 0
9 = (12)
M-1 0 —Xo
Mg = 1 — . . . - .
0" k] mz::U [Tlk 4 14 m] =7k 4 m], where X, = X/ > 0 is any positive semi-definite matrix.
and Proposition 7. Consider the time-varying “delay-difference”
M-1 operatorS, where the delay parameter could be any se-
SNk == — > |r[k + L+ m] — 7k + m]|, quence froni(;. Then the operato§. satisfies any integral
M m=0 quadratic constraint defined by
Then Proposition 2 can be interpreted as follows: if one Jwy12 X 0
may find a constani/ > 1 and establish that thé/-step I3 = [We 0)| 3 I } (13)
—A3

average variation of the delay sequerdé[k] is strictly less
than one for allk, then the upper bound of the -step total
variation provides a tighter upper bound of thggain of
the delay operator, assuming that the upper bound of the T
M -step total variationd is strictly less thary; — T, + 1. |p(e?)|? = Z |1 — e 9"w|? (14)
For the upper bound! of §¥[k] to be useful, it is crucial =1
thatd < Tas — T+ 1 and M [k] is strictly less than one for
all k. Also notice that the actual value of the upper boun
of 62 [k] does not offer useful information here. The onlyProposition 8. Consider the time-varying “delay-difference”
crucial information is whether it is strictly less than one. operatorS, where the delay parameter could be any se-
» quence fromY';. Then the operato§, satisfies any integral
quadratic constraint defined by

where¢(z) € Rl satisfies

glnd X5 = X} > 0 is any positive semi-definite matrix.

Proposition 3. Consider the time-varying “delay-difference
operator S, where the delay parameter could be any

sequence frorfY;. Then the following characterization holds T2 (i) [2X 0
for S,: for any &, signalv, I, = arlp(e) [ X B (15)
0 X4
oo T
IS-ol7, < >0 (lk] — [k —i])*. (9) wherey(z) = 2L and X, = X} > 0 is any positive semi-

k=—o0 i=1 definite matrix.
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Assume the variation of is arbitrarily.

IV. STABILITY CRITERIA FORDISCRETETIME LTI Listed below are the maximaly; for given Tn.

SYSTEMS WITH TIME-VARYING DELAYS T =2 T =4 | T;n =6 | Ton =10 | Ton = 12
. : . IQC 10 11 11 13 14
To further illustrate the 1QC analysis of varying-time- b?, 7 - ) 5 i 3
delay robustness presented in Section Il, let us consider IQCspy [3 13 13 14 15 17

defined byll; andIls (equations (12) and (13)) f@P, and TABLE |
S:. ThenS, satisfies IQC defined by

(d+1)Xs + |p(e?) |2 X3 Xs

Meomp = X —X5 — X5
Assume the “average” variation ef is less than 1; that
With this IQC, Theorem 1 leads to the following stability cri- is, L M Tk i+ 1] — k414 < & < 1.
teria: the system is stable if there exists symmetric matrices - Listed 2§I0W are tbre maximéFTM for given TTm'
m = m = m = m = 10 m =12
X2 >0, X3 >0, ande > 0 such that < 0 5 5 5 5
Jwy* VENE jw Jwy* d/M <2/3 16 16 16 16 16
G)"((d+ 1) Xa +[0(™)PXa)G(™) + Glei)x,  IM=20] T8 | de | 16 | 18 L
+ XoG(e?Y) — Xo — X3 < —el, Yw € [—m, 7). d/M < 4/5 13 13 13 - -
(16) TABLE Ii
where G(z) = —(2I — (A + Ag)) 'Ag4. Let

(Ag, By, Cy, Dy) be the minimum state space realization
of ¢(z) - I,,. Define

stability boundaries predicted by IQC analysis apparently be-
A = {A tds 0 } , B, = {Ad} , Cp = {I” 0 } . come bigger. Furthermore, the smaller the average variation

Bs Ay 0 Dy Cy is, the bigger the upper bounds,;. Secondly, we observe
and Moy = — X5 — X3, that for the casd/M < 1/2, the predicted stability boundary
d+1Xs 0 P T = 20 is better than those predicted by [3] and [4]. Since
My, = {( +0) 2 X } , Mo = [_0 2} . the notation M -step average variation” was not introduced
3

in [3] and [4], this is not a fair comparison; nevertheless, it
A finite dimensional formulation of stability criterion (16) shows that the notation is a useful concept which may reduce
can be obtained by the KYP lemma: the system is stable ¢onservatism of time-delay robustness analysis. Finally, we
there exist a symmetric matrice®, X, > 0, and X3 > 0 observe that for a given upper bounddf\, the predicted
such that stability boundary is independent of the lower boundrof
APA, — P A,PB, CIM11Cy  ClMis T,,_L. The mformatlo!"l .orﬂ'm somehow bgcomgs useless in
/ / + / <O0. this case. Whether it just happens for this particular example
BiPA,; B{PB; M{,C Moo . ) . . o
or there is more to it requires further investigation.
V. NUMERICAL EXPERIMENTS

Consider the following discrete-time system with a time- VI. CONCLUDING REMARKS

varying delay In this manuscript we present sevekatjain properties of

0.8 0 } o[k] {0,1 0 } ol — 7] the discrete-time time-varying delay operdafdr and “delay—
0.05 0.9 —-0.2 —0.1 difference” operatolS, := I — D, as well as the resulting

. ) . IQC characterizations of these two operators. One of the new
The example is taken from [4], and is also consideregyinytions is to show what role the variation of the delay
in [3]. Assuming the rate of variation is arbitrarily, thesequence plays in regard to the energy amplificatio®of
results presented in Table | are obtained by applying thghich ajlows us to better understand the behaviorTof
proposed IQC analysis, where IQCs utilized are defined by, 4 15 gerive less conservative stability criteria for verifying
1L, II;, and lly. The results are compared against thosg,ing time-delay robustness. Numerical experiments are
given in [4] and [3]. The IQC analysis gives better stability,,)q,cted to verify the effectiveness of the proposed stability
boundaries than the criterion in [4] does, but is apparentlyiaria The results indicate that one can reduce conservatism
more conservative than the c_rltenon in [3]. Th's clear!yof stability analysis by exploiting the information on the
indicates that there are more integral quadratic constrainis iation of the delay sequence. They also show that there

for operatorsD- and S to be explored. are potentially more 1QCs to be discovered for the operators
If we further assume that there exists &hsuch that the ands..

M-step average variation af is strictly less than 1, then
the IQC defined byll, becomes applicable. Utilizing this
and the 1QCs defined bM3 andIl,, we apply the proposed
IQC analysis and obtain the stability boundaries as listed Chung-Yao Kao is supported by the National Science
in Table Il. First of all, we observe that when the averag€ouncil (NSC), Taiwan, under the grants NSC 98-2218-E-
variation of 7 is restricted to be strictly less than 1, the110-006 and NSC 98-3114-E-110-004.

x[kJrl]—[

VIl. ACKNOWLEDGEMENTS

2312



Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems — MTNS 2010« 5-9 July, 2010 - Budapest, Hungary

REFERENCES

[1] E. Fridman and U. Shaked. An improved stabilization method for
linear time-delay systemdEEE Transactions on Automatic Contyol
47(11):1931-1937, November 2002.

[2] E. Fridman and U. Shaked. Delay-dependent stability dad control:
Constant and time-varying delaysnternational Journal of Control
76(1):48-60, 2003.

[3] H. Gao and T. Chen. New results on stability of discrete-time systems
with time-varying state delay. IEEE Transactions on Automatic
Control, 52(2):328-334, February 2007.

[4] H. Gao, J. Lam, C. Wang, and Y. Wang. Delay-dependent output-
feedback stabilization of discrete-time systems with time-varying state
delay. IEEE Proceedings — Control Theory Applicatjoh51(6):691—
698, November 2004.

[5] C.-Y. Kao. On robustness of discrete-time LTI systems with varying
time delays. InProceedings of IFAC 2008008.

[6] C.-Y. Kao and A. Ranzter. Stability analysis with uncertain time-
varying delays.Automatica 43(6):959-970, June 2007.

[7] V. L. Kharitonov and S.-I. Niculescu. On the stability of linear systems
with uncertain delay. IEEE Transactions on Automatic Control
48(1):127-132, January 2003.

[8] A. Megretski and A. Rantzer. System analysis via Integral Quadratic
Constraints IEEE Transactions on Automatic Conty@l2(6):819-830,
June 1997.

[9] J.-P. Richard. Time-delay systems: an overview of some recent
advances and open problemdsitomatica 39(10):1667-1694, October
2003.

[10] S.-H. Song, J.-K. Kim, C.-H. Yim, and H.-C. Kim.H, control
of discrete-time linear systems with time-varying delays in state.
Automatica 35:1587-1591, 1999.

[11] V. Suplin, E. Fridman, and U. Shakeéil control of linear uncertain
time-delay systems - a projection approacltEE Transactions on
Automatic Contrgl 51(4):680—685, April 2006.

[12] M. Wu, Y. He, J.-H. She, and G.-P. Liu. Delay-dependent criteria
for robust stability of time-varying delay systems.Automatica
40(8):1435-1439, August 2004.

2313





