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Abstract— This paper investigates the conditions under which
an abstract matrix multiplier method can be applied to deter-
mine guaranteeing cost controls for systems containing nonlin-
ear/uncertain elements via linear matrix inequalities (LMIs).
Quadratically constrained uncertainties and nonlinearities are
considered which comprehend the cases of norm-bounded,
positive-real and sector-bounded uncertainties/nonlinearities.
Both the discrete-time and the continuous-time cases are
discussed. Necessary and sufficient conditions are formulated in
case of unstructured uncertainty. The conditions are sufficient
in the structured case. The cost guaranteeing controls can be
determined by solving LMIs. The proposed method provides a
guideline to treat system nonlinearities, if the system dynamics
can be formulated as considered in the paper by an approriate
choice of system parameters.

I. INTRODUCTION

The dynamics of most systems cannot adequately be
described by linear time-invariant models because of the
presence of some unknown or unmodelled time-varying
and/or nonlinear elements in the real system. In the past
decades, a huge amount of works has been devoted to the
investigation of different aspects of this problem. This paper
does not aim at giving a comprehensive review of results in
this field, only those are mentioned which have influence on
the present work. Among them, [2], [5], [8], [10], [14], [18],
[28], [29], [33] deal with robust and quadratic stability of
uncertain systems, [4], [6], [7], [15], [23], [39] are devoted
to the design of guaranteed cost and H∞ control, while
[11]-[13], [17], [19], [21], [24], [30]-[32], [34]-[37] and [40]
deal with positive realness and dissipativity of systems with
positive real, sector bounded and dissipative uncertainties.
This paper considers control systems, where nonlinearities
and/or uncertainties may effect on the system dynamics,
and these nonlinearities/uncertainties are allowed to be time-
varying and/or unknown. The only information about the
nonlinearities/uncertainties is that they are restricted by a
given set, on which no a priori algebraic or topological
requirements are imposed. Because of the unknown non-
linearities/uncertainties, it is not possible to minimize any
objective (or cost) function assigned to this type of systems,
therefore only suboptimal solutions can be expected. This
paper focuses on the determination of cost guaranteeing
controls for the above type of systems formulated either in
continuous- or in discrete-time.
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This problem requires the solution of an inequality over
the set constraining the nonlinearities/uncertainties. In gen-
eral, this is numerically a non-tractable problem. However, a
generalized multiplier method analogous to the well-known
Lagrange-multiplier method provides an opportunity to get
rid of the constraining set, if one can add a new term to
the original inequality in such a way that the satisfaction
of this augmented inequality on the whole space should
be equivalent to the original one over the constraining set.
Paper [26] presents the so-called full-block S-procedure,
which is a matrix multiplier method of this type. It can be
applied in cases, when the set of uncertainties/nonlinearities
is formulated as a parametrized family of subspaces. Papers
[1] and [2] also use matrix multipliers for several special
problems without imposing any restriction on the constraint
set. A further important contribution of the latter work is the
notion of sufficiently rich set of multipliers that allows to
use a subset of the multipliers without loss of the necessity
part of the conditions. The authors of the present paper
developed an abstract multiplier method (see [16]) that is
the generalization of the above mentioned approaches. This
method can be applied, when the nonlinearities/uncertainties
can be formulated as parametrized family of cones instead
of subspaces.

Systems with quadratically constrained uncertainties will
be investigated in this paper. Necessary and sufficient con-
ditions will be formulated for the existence of cost guar-
anteeing controls. If there exist cost guaranteeing controls,
they can be derived from the solution of LMIs that can
easily be solved by standard methods and by appropriate
software. The results are based on the notion of sufficiently
rich set of multipliers introduced by [2]. On the one hand,
the paper is also related with the results of [32] and [36],
that formulated only sufficient conditions for the robust
dissipative control problem. On the other hand, the presented
results can serve as a guideline for the treatment of systems
nonlinearities/uncertainties in robustness problems by the
appropriate choice of the parameters of nonlinear/uncertain
inputs and outputs.

The transpose of matrix A is denoted by AT , In is the
identity matrix of dimension n, and P > 0 (≥ 0) denotes
the positive (semi-)definiteness of P . Symbol ∇V stands for
the gradient of the multivariable function V , and symbol
⊗ is used for Kronecker-product. The notation of time-
dependence is omitted, if it does not cause any confusion.
For the sake of brevity, asterisks replace the blocks in
hypermatrices, and matrices in expressions that are inferred
readily by symmetry.
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II. PROBLEM STATEMENT

Consider system

δx = Ax+Bu+ Ew +
s∑

i=1

Hipi (1)

qi = Cqi
x+ Eqi

w +Dqi
pi, i = 1, ..., s, (2)

where x ∈ Rnx is the state, u ∈ Rnu is the input,
w ∈ Rnw is the exogenous disturbance, δx stands for ẋ in the
continuous-time and x+ in the discrete-time case. Further on,
pi and qi may depend on t, x, and w, and they have values of
dimensions lpi

and lqi
, respectively. Functions pi incorporate

all the nonlinear and uncertain elements of the system
dynamics, while functions qi represent the uncertain outputs.
The only information that can be used about

(
pT , qT

)T
,

where pT =
(
pT

1 , ..., p
T
s

)
, qT =

(
qT
1 , ..., q

T
s

)
is that its

values are restricted to a given set Ω ⊂ Rlp+lq , where
lp = lp1 + ...+ lps

, lq = lq1 + ...+ lqs
. In this paper both the

case of unstructured uncertainties (when s = 1) and the case
of structured uncertainties (when s > 1) will be investigated.
The set Ω is assumed to be quadratically constrained, i.e.
given as

Ω =
{(

p
q

)
∈ Rlp+lq ,(

pi

qi

)T (
Q0i S0i

ST
0i R0i

)(
pi

qi

)
≥ 0, i = 1, ..., s

}
, (3)

where Q0i = QT
0i, R0i = RT

0i ≥ 0 and S0i are ma-
trices of appropriate dimension. We shall use the notation
Q0 = diag{Q01, ..., Q0s}, R0 = diag{R01, ..., R0s} and
S0 = diag{S01, ..., S0s}. A system given by (1)-(3) is said
to be well-posed, if for any (x, u, w) there is a p so that(
pT , qT

)T ∈ Ω, where q is the vector defined by (2). Because
of the assumption R0 ≥ 0, the well-posedness of the system
(1)-(3) immediately follows.

Let the performance index to be minimized

J(x0, u, w) =


∞∫
0

L(x(t), u(t), w(t))dt if t ∈ R,
∞∑

t=1
L(x(t), u(t), w(t)) if t ∈ Z

(4)

with

L(x, u, w) = xTQLx+ uTRLu− wTSLw (5)

be assigned to system (1)-(2), where matrices QL, RL and
SL are positive definite and symmetric.

Since unknown uncertainties/nonlinearities are present in
the system dynamics, it is not possible to find an optimum
of (4)-(5). Instead, our aim is to find a guaranteed cost and a
guaranteeing cost control in the sense of the definition below.

Consider function V : Rnx → R+, and for any function
f(x, u, w, p) introduce the following notation:

V∗f (x, u, w, p) =
{
∇VT (x) f(x, u, w, p), if t ∈ R,
V(f(x, u, w, p))− V(x), if t ∈ Z.

(6)

Definition 1 Consider the nonlinear/uncertain system

δx = f(x, u, w, p), q = g(p)

with cost function (4)-(5) and with a given set of nonlin-
earities/uncertainties Ω. The state-feedback u = k(x) is a
guaranteeing cost robust minimax strategy if there exists a
function V : Rn → R+ such that

supp
q

∈Ω

{V∗f (f(x, k(x), w, p) + L(x, k(x), w)} < 0 (7)

holds for all x and w,
(
xT , wT

)
6=
(
0T , 0T

)
. In this case

V(x0) is called a guaranteed cost.
The paper deals with the determination of a guaranteeing

cost linear feedback for system (1)-(2).
Remark 1 Similar definitions of guaranteed cost are

frequently used in the literature. (See e.g. [15], [23], [39]
and the references therein). If the external disturbances are of
class L2(0,∞) (or l2(0,∞)), then one can show that V(x0)
of Definition 1 yields an upper bound of the cost function
for all admissible uncertainties. This way is accepted for
example in [4]. Paper [15] also investigates the relation of
the two ways of defining the guaranteeing cost control. We
note that - by supplementing the system formulation with
a performance output - a slight modification of Definition
1 may serve as a starting point for the investigation of
dissipativeness of systems, as well (see definition e.g. in [31]
and [37]). However, our aim is to show how the abstract
multiplier method can be applied to a control problem,
therefore we disregard the details.

Remark 2 Even for systems having linear nominal part
subject to quadratic cost criterion, it is very difficult to
analyze the fulfillment of (7), and it is even more difficult to
find an appropriate function V and feedback k(x) because
of the need of maximization over Ω. In order to get rid of
this constraining set, one can apply multipliers similarly to
the standard Lagrange-multiplier method. In this case, an
additional term is supplemented to the expression in the left-
hand side of (7) within the curly braces in such a way that
the satisfaction of the ’new’ inequality over a whole space
will be equivalent to the original one over the set Ω. In this
way, the investigation of the inequality and of the uncertainty
bounding set is separated.

This idea has been widely used in the literature, among
the others, in analysis and design problems of robust
control. Several approaches are based on the well-known
S−procedure of Yakubovich [38]. A generalization called
full-block S−procedure is developed by Scherer [26]. It can
be applied for different kinds of robustness problems pro-
vided that the nonlinear/uncertain part of the system dynam-
ics can be represented by a parametrized family of subspaces.
Such a representation is immediate, if the uncertain input
and output are connected through the multiplication by an
uncertain matrix. In contrast, paper [2] considers the stability
problem of continuous-time linear time-invariant systems
with arbitrary uncertainty set Ω. In this latter respect, it
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is the most general case, that one can imagine. Besides,
the authors derive appropriate sets of multiplier matrices
for many different kinds of uncertainty sets. However, the
result of the paper [2] are limited to the above mentioned
LTI problems.

In [15], an abstract multiplier method has been established
that can be applied for a wide variety of robustness prob-
lems, presumed that the uncertainties/nonlinearities can be
restricted to a parametrized family of closed cones. It has
been shown, as well, that this restriction does not cause any
loss of generality, if the question is how an inequality for a
quadratic function over a constrained set can equivalently be
substituted by a similar one but over a whole linear space.
The aim of the present paper is to show, how the abstract
multiplier method of [16] can be applied for the solution of
the formulated problem.

III. PRELIMINARIES

We recall in this section a special case of the results
presented in [16], and we will show in the next section how
these results can be applied to the solution of the problem
formulated above.

Suppose that B ⊂ RN is a subspace and matrices U ∈
Rj×N and V ∈ Rl×N are fixed, where V has maximum row
rank. Consider a symmetric matrix Ψ ∈ Rj×j . Let Q ⊂Rl

be given. Assume that

V B ∩ Q 6= ∅.

Definition 2 ([2]) A symmetric matrix M is called a
multiplier matrix for Q if qTMq ≥ 0 for all q ∈ Q. If this
inequality is strict, then M is called a positive multiplier
matrix for Q.

Definition 3 ([16]) The set M+ of positive multiplier
matrices for Q is called a sufficiently rich set of positive
multipliers for Q, if for any positive multiplier M for Q
there exists an element M ∈M+ such that M ≤M .

Introduce the following set

BQ = {y ∈ B : V y ∈ Q} .

Suppose that the fulfillment of the inequality

yTUT ΨUy < 0 ∀y ∈ BQ (8)

has to be investigated. Let B0 be a subspace of maximum
dimension in B, for which UT ΨU ≥ 0. If the dimension of
B0 is equal to zero, then UT ΨU < 0 is satisfied on B, thus
there is an ε > 0 such that (8) equivalent to

yT (UT ΨU + εV TV )y < 0 ∀y ∈ B, y 6= 0.

Evidently, εIl ∈M+.
In [16], it was proved that, if dimB0 ≥ 1 for some B0

and
B0 ∩ BconeQ 6= {0},

then the strict inequality

yT (UT ΨU + V TMV )y < 0

is not satisfied for all 0 6= y ∈ B whatever multiplier matrix
for Q is considered.

Therefore, we may assume without substantial restriction
of generality that the following conditions hold true.

Condition 1

1.) Q is a cone,
2.) B0 ∩ BQ = {0} ∀B0,

and
3.) either Q ⊂ V B or
Q is closed.

Note that, in the investigation of (8), item 1 of Condition
1 does not restrict the generality.

Now we cite the main result of [16].
Theorem 1 ([16]) Assume that Condition 1 holds true,

and M+ is a sufficiently rich set of positive multipliers for
Q. Then the following statements are equivalent.

1. Inequality
yTUT ΨUy < 0 (9)

holds true for all 0 6= y ∈ BQ.
2. There exists a M ∈M+ such that

yT (UT ΨU + V TMV )y < 0, y ∈ B, y 6= 0. � (10)

We will need also the following strict version of the S-
procedure lemma.

Lemma 1 Suppose that Φ1,Φ2 ∈ RN×N are symmetric,
then the following statements are equivalent.

1. xT Φ2x > 0 for all x 6= 0, for which xT Φ1x ≥ 0 holds.
2. There exists a positive constant τ such that

xT (Φ2 − τΦ1)x > 0 for all x 6= 0. �
Remark 3 The original version of Lemma 1 is related

to Yakubovich [38]. Since then several generalizations have
been established to it, and comprehensive reviews are given
e.g. in [3], [9], [20], [22], [25].

IV. APPLICATION OF THE ABSTRACT MULTIPLIER
METHOD

In this section, a necessary and sufficient condition will
be given for a linear feedback u = Kx to be guaranteeing
cost control for system (1)-(2). The condition will be given
by a linear matrix inequality (LMI), and the feedback matrix
K can be determined via the solution of this LMI. The key
element of solving the problem is to find a sufficiently rich
set of positive multipliers.

A. The sufficiently rich set of positive multipliers

Consider positive constants τi and εi, i = 1, ..., s and set

τ = diag
{
τ1Ilp1

, ..., τsIlps

}
, τ = diag

{
τ1Ilq1 , ..., τsIlqs

}
,

ε = diag
{
ε1Ilp1

, ..., εsIlps

}
, ε = diag

{
ε1Ilq1 , ..., εsIlqs

}
.

We note that, if s = 1, matrices τ , τ , ε and ε consist of a
single block, thus two scalar parameters can be used instead.
In order to avoid the repetition of big formulas, we shall use
the matrix notations in the special case of s = 1, as well.
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Proposition The set

M+ =
{
M : M =

(
τQ0 + ε τS0

ST
0 τ τR0 + ε

)
,

τi, εi > 0, i = 1, ..., s
}

(11)

consists of positive multiplier matrices for Ω. If s = 1, then
M+ is sufficiently rich.

Proof Since for all
(
pT , qT

)
6=
(
0T , 0T

)
from Ω we have(

p
q

)T

M

(
p
q

)
=

s∑
i=1

{
τi

(
pi

qi

)T (
Q0i S0i

ST
0i R0i

)(
pi

qi

)
+ εi(pT

i pi + qT
i qi)

}
> 0, (12)

the first statement is obvious.
Suppose now that s = 1 and M is an arbitrary positive

multiplier for Ω. Then the application of Lemma 1 gives the
existence of a positive constant τ1 such that(

p
q

)T

M

(
p
q

)
− τ1

(
p
q

)T (
Q0 S0

ST
0 R0

)(
p
q

)
> 0 (13)

for all
(
pT , qT

)T ∈ Rlp+lq \{0}. Because of continuity, the
left-hand side of (13) takes on its positive minimum on the
unit sphere, therefore there exists an ε1 > 0 such that(

p
q

)T (
τ1Q0 + ε1I τ1S0

ST
0 τ1 τ1R0 + ε1I

)(
p
q

)
<(

p
q

)T

M

(
p
q

)
. (14)

This means that M+ is a sufficiently rich set of positive
multipliers with positive constants τ1 and ε1 if s = 1. �

B. Main results

In order to derive the main results, we need the following
assumption

Assumption 1 Inequality

Q0 +DT
q S

T
0 + S0Dq +DT

q R0Dq < 0 (15)

holds, where Dq = diag{Dq1 , ..., Dqs} ∈ Rlq×lp .
Remark 4 We shall see that this inequality is necessary

and sufficient for the satisfaction of item 2 in Condition 1. In
this sense Assumption 1 is required not only as a technical
tool for the proof, because, if it is not satisfied, then it is
not possible to get rid of the constraints (see considerations
before Condition 1).

A condition of type (15) with R0 ≥ 0 is employed also
e.g. in [31], [36] and [37] for the matrices characterizing
system uncertainties. This assumption is less strict than that
of [35], where Q0 = 0, S0 = I and Dq must be quadratic
and invertible. If Q0 = 0, S0 = I and R0 = I , then (15)
is the inequality characterizing the so called positive real
uncertainty (see e.g. [17]). By appropriate choice of Q0, S0

and R0, one can obtain norm-bounded and sector-bounded
uncertainties, as well.

Introduce the 2nx × 2nx matrix

Φ =


Φc =

(
0 I
I 0

)
, if t ∈ R,

Φd =
(
−I 0

0 I

)
, if t ∈ Z,

and for any given K ∈ Rnu×nx , set

A = A+BK, Q = QL +KTRLK. (16)

Moreover, set

CT
q =

(
CT

q1
, ..., CT

qs

)
, H = (H1, ...,Hs) .

Theorem 2 Suppose that s = 1. Then the state-feedback
u = Kx is a guaranteeing cost robust minimax strategy and
the guaranteed cost is V(x0) with V(x) = xTPx if and only
if there exist such positive constants τi and εi (i = 1) that

(∗) diag
{

Φ⊗ P ;
(
Q 0
0 −SL

)
;

(
τQ0 + ε τS0

ST
0 τ τR0 + ε

)}


I 0 0
A E H
I 0 0
0 I 0
0 0 I
Cq Eq Dq

 < 0. (17)

If s > 1, then inequality (17) is sufficient for u = Kx
and V(x0) to be a cost guaranteeing robust control and a
guaranteed cost, respectively.

Proof If u = Kx, V(x) = xTPx, then (7) is equivalent
to

sup p
q

∈Ω

F (x,w, p) < 0 (18)

with

F (x,w, p) = (∗) (Φ⊗ P )
(
I 0 0
A E H

) x
w
p

+

(∗)
(
Q 0
0 −SL

)(
x
w

)
for all x and w,

(
xT wT

)
6=
(

0T 0T
)
. Suppose

first that s = 1 and apply the abstract multiplier method as
follows. In this case Q = Ω, thus item 1 of Condition 1 is
obviously satisfied. Set

N = 3nx + nw + lp + lq, U = IN ,

Ψ = diag
{

Φ⊗ P ;
(
Q 0
0 −SL

)
;
(

0 0
0 0

)}
,

L1 =


I 0
A E
I 0
0 I
0 0
C Eq

 , L0 =


0
H
0
0
I
Dq


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and

B0 = imL0, B1 = imL1, B = im (L1,L0) .

Obviously, dimB = nx + nw + lp, dimB1 = nx + nw,
dimB0 = lp and

F (x,w, p) = yT Ψy, if y = (L1,L0)

 x
w
p

 .

Set

V =
(

0 0 0 0 I 0
0 0 0 0 0 I

)
∈ R(lp+lq)×N ,

then

BΩ =
{
y ∈ B ⊂ RN : V y ∈ Ω

}
. (19)

Set (19) is not empty, since the problem is well posed. The
fulfillment of (18) is equivalent to the negative definiteness
of Ψ on BΩ. We have to show that the conditions of Theorem
1 are satisfied. It is enough to prove that items 2 and 3 of
Condition 2 hold true.

If y ∈ B0, i.e.

yT = (0T ; (Hp)T ; 0T ; 0T ; pT ; (Dp)T ),

then on the one hand

yT Ψy = (∗) (Φ⊗ P )
(

0
Hp

)
≥ 0.

On the other hand, if y ∈ B0, then

V y =
(

p
Dqp

)
∈ Ω

if and only if(
p
Dqp

)T (
Q0 S0

ST
0 R0

)(
p
Dqp

)
≥ 0,

i.e.

pT
(
Q0 +DT

q S
T
0 + S0Dq +DT

q R0Dq

)
p ≥ 0,

which holds only for p = 0 because of Assumption 1.
This means that only p = 0 is an admissible nonlinear-
ity/uncertainty at x = 0. Thus B0∩BΩ = {0} for B0 =imL0.

Let B̃0 any (other) subspace of B such that for any ỹ ∈ B̃0,
inequality ỹT Ψỹ ≥ 0 holds. Let ỹ ∈ B̃0, ỹ /∈ B0 be given as

ỹ = L1

(
x̃
w̃

)
+ L0p̃ = ỹ1 + ỹ2,

i.e.

ỹ1 =


x̃

Ax̃+ Ew̃
x̃
w̃
0
Cqx̃

 ∈ B1, ỹ2 =


0
Hp̃
0
0
p̃
Dqp̃

 ∈ B0.

One may assume that ỹ1 6= 0, i.e.
(
x̃T , w̃T

)
6=
(
0T , 0T

)
,

since otherwise ỹ = ỹ2 ∈ B0 would hold. We obtain that

V ỹ =
(

p̃
Cx̃+Dp̃

)
/∈ Ω,

since otherwise ỹT Ψỹ < 0 would hold. Thus ỹ /∈ BΩ, which
means that BΩ ∩ B̃0 = {0}, consequently the second item of
Condition 2 is satisfied. Moreover,

V B =
{(
pT , qT

)T
: q = Cqx+Dqp,

p ∈ Rlp , x ∈ Rnx},

thus V B ⊃ Ω. Therefore, all requirements of Condition 1
are satisfied. Moreover, M+ is sufficiently rich, if s = 1.
Since the assumptions of Theorem 2 are satisfied, (18) is
equivalent to the existence of M ∈M+ such that

Ψ + V TMV < 0 (20)

on B. Using the definition of B, this gives the first statement
of the theorem.

To show the second statement, we note that the existence
of a positive multiplier M ∈M+ such that (20) holds true is
sufficient for (18), thus the second statement of the theorem
is true as well. �

We note that, if s > 1, then M+ may not be sufficiently
rich, therefore the equivalence of (20) and (18) does not
follow from Theorem 1.

In what follows we shall derive LMIs for the computation
of matrices P , K and the parameters τi, εi, i = 1, ..., s.
Introduce the notations ρi = τ−1

i , µi = ε−1
i and

ρ = diag
{
ρ1Ilp1

, ..., ρsIlps

}
,

ρ = diag
{
ρ1Ilq1 , ..., ρsIlqs

}
,

µ = diag
{
µ1Ilp1

, ..., µsIlps

}
,

µ = diag
{
µ1Ilq1 , ..., µsIlqs

}
, (21)

where τi, and εi are positive constants, i = 1, ..., s.
Theorem 3 Let system (1)-(3) be considered in continuous

time. Inequality (17) with (16) holds true for P = PT > 0,
K, τi > 0, εi > 0, i = 1, ..., s if and only if W = P−1,
Y = KP−1, ρ, ρ, µ and µ satisfy the following LMI:

ψ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
ET −SL ∗ ∗ ∗ ∗ ∗ ∗
ψ31 S0Eq ψ33 ∗ ∗ ∗ ∗ ∗
0 0 ρ −µ ∗ ∗ ∗ ∗

CqW Eq Dqρ 0 −µ ∗ ∗ ∗
ψ61 ψ62 ψ63 0 0 −ρ ∗ ∗
Y 0 0 0 0 0 −R−1

L ∗
W 0 0 0 0 0 0 −QL


< 0, (22)

with

ψ11 = WAT +AWT + Y TBT +BY,

ψ31 = ρHT + S0CqW,

ψ33 = Q0ρ+ S0Dqρ+ ρDT
q S

T
0 ,

ψ61 = R
1/2
0 CqW, ψ62 = R

1/2
0 Eq, ψ63 = R

1/2
0 Dqρ.
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Proof Consider inequality (17) and multiply from left and
right the middle blockdiagonal matrix by LL = I , where

L =


I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 I 0
0 0 0 I 0 0
0 0 I 0 0 0
0 0 0 0 0 I

 .

We obtain that

(∗)


0 P 0 0 0 0
P 0 0 0 0 0
0 0 τQ0 + ε 0 0 τS0

0 0 0 −SL 0 0
0 0 0 0 Q 0
0 0 ST

0 τ 0 0 τR0 + ε




I 0 0
A E H
0 0 I
0 I 0
I 0 0
Cq Eq Dq


< 0. (23)

Applying the linearization lemma (see [27]) for (23) one
arrives at

φ11 ∗ ∗ ∗ ∗
ETP −SL ∗ ∗ ∗
φ31 τS0Eq φ33 + ε ∗ ∗
I 0 0 −Q−1 ∗
Cq Eq Dq 0 −(τR0 + ε)−1


< 0, (24)

where

φ11 = ATP + PA,
φ31 = HTP + τS0Cq,

φ33 = τQ0 + τS0Dq +DT
q S

T
0 τ .

By Schur complement, one obtains from (24) the following
inequality:

φ11 +Q ∗ ∗ ∗
ETP −SL ∗ ∗
φ31 τS0Eq φ33 + ε ∗
Cq Eq Dq −(τR0 + ε)−1

 < 0. (25)

Let us apply the Schur complement again for (25):φ11 +Q ∗ ∗
ETP −SL ∗
φ31 τS0Eq φ33

+

0
0
I

 ε (∗) +

(∗)
(
τR0 + ε

) (
Cq Eq Dq

)
< 0. (26)

Inequality (26) is equivalent toφ11 +QL ∗ ∗
ETP −SL ∗
φ31 τS0Eq φ33

+

KT

0
0

RL (∗) +

(∗) diag{ε; ε; τ}

 0 0 I
Cq Eq Dq

R
1/2
0 Cq R

1/2
0 Eq R

1/2
0 Dq

+

< 0. (27)

By Schur complement again, one obtains that

φ11 +QL ∗ ∗ ∗ ∗ ∗ ∗
ETP −SL ∗ ∗ ∗ ∗ ∗
φ31 τS0Eq φ33 ∗ ∗ ∗ ∗
0 0 I −ε−1 ∗ ∗ ∗
Cq Eq Dq 0 −ε−1 ∗ ∗

R
1/2
0 Cq R

1/2
0 Eq R

1/2
0 Dq 0 0 −τ−1 ∗

K 0 0 0 0 0 −R−1
L


< 0. (28)

Finally, inequality (22) is obtained from (28) by
the congruence transformation diag{P−1; I; τ−1I; I; I; I}.
�

Analogous considerations provide the results for the
discrete-time case, therefore we present the next theorem
without proof for the lack of space.

Theorem 4 Let system (1)-(3) be considered in discrete-
time. Inequality (17) with (16) holds true for P = PT > 0,
K, τi, εi, i = 1, ..., s if and only if matrices W = P−1,
Y = KP−1, ρ, ρ, µ and µ satisfy the following LMI:

−W ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
ϕ21 −W ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ET −SL ∗ ∗ ∗ ∗ ∗ ∗
ϕ41 ρHT S0Eq ϕ44 ∗ ∗ ∗ ∗ ∗
0 0 0 ρ −µ ∗ ∗ ∗ ∗

CqW 0 Eq Dqρ 0 −µ ∗ ∗ ∗
ϕ71 0 ϕ73 ϕ74 0 0 −ρ ∗ ∗
Y 0 0 0 0 0 0 −R−1

L ∗
W 0 0 0 0 0 0 0 −QL


< 0, (29)

with

ϕ21 = AW +BY,

ϕ41 = S0CqW, ϕ44 = Q0ρ+ S0Dqρ+ ρDT
q S

T
0 ,

ϕ71 = R
1/2
0 CqW, ϕ73 = R

1/2
0 Eq, ϕ74 = R

1/2
0 Dqρ.

Remark 4 If LMIs (22) and (29) have solutions with
respect to the unknowns W , Y , ρ, ρ, µ and µ, then from
a feasible solution, the matrices P , K and the constants τi
and εi i = 1, ..., s can be determined, thus the guaranteed
cost control problem is reduced to the solution of LMIs both
in the continuous and in the discrete-time case. If s = 1,
and these LMIs have no solution, one can conclude that the
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formulated guaranteed cost control problem has no solution
at all.

Remark 5 Theorem 2 together with Theorem 3 or Theo-
rem 4 reduces the guaranteed cost control problem for system
(1)-(3) to the solution of an LMI. A similar methodology
can be used in different problems when an inequality for a
quadratic function over a constrained set has to be satisfied.
These results show that the solution of guaranteed cost (or
H∞ or dissipative) control problems with nonlinear system
dynamics can be reduced to LMIs, if a suitable uncertain
output and a suitable constraint set Ω can be given. The key
point in this respect is that Condition 1 has to be satisfied
for the ’abstract’ formulation of the problem.

Remark 6 Each feasible solution of (22) and (29) de-
termines an appropriate guaranteeing cost control with the
appropriate guaranteed cost. However, one should achieve as
low upper bound on the guaranteed cost as possible. This can
be obtained by choosing an appropriate objective function for
the LMIs (22) and (29). Introduce a new scalar variable ω,
add a new inequality

ωI < W (30)

to the LMIs (22) and (29) and find the maximum of ω under
the constraints given by the inequalities. This assures that
the maximum eigenvalue of P , therefore the maximum of
the guaranteed cost over the unit sphere is minimal.

V. A NUMERICAL EXAMPLE

To illustrate the results, consider system (1) in continuous
time with

A =
(
−1 0.5
−0.5 1

)
, B =

(
1
1

)
,

H =
(

2
2

)
, Cq = (2; 1) ,

Dq = −1, E = 0.01I2.

Set furthermore QL = I2, RL = 1, SL = I2 in (5), and
consider Q0 = 0, R0 = 0, S0 = 1 in the definition of Ω, for
which (15) is satisfied. For each pair p and q = Cqx+Dqp,(

p
q

)
∈ Ω,

i.e. the inequality
qT p ≥ 0 (31)

holds if and only if (Cqx+Dqp)p ≥ 0, i.e. Cqxp ≥ p2. By
completing the square we obtain that

−
∣∣∣∣Cqx

2

∣∣∣∣+
Cqx

2
≤ p ≤

∣∣∣∣Cqx

2

∣∣∣∣+
Cqx

2
.

For simulation, a nonlinearity of the form

p =
{

1
2Cqx+ 1

2 |Cqx| sin(Cqx)−1, if Cqx 6= 0,
0, if Cqx = 0

satisfying this condition has been taken. (Note that this
nonlinearity is non-Lipschitzian.) The solution of the LMI
system (22) and (30) provides the guaranteeing cost feedback

K = (−1.7445;−6.4793) ,

where ω was maximized as proposed in Remark 6. Suppose
that wT (t) = (t + 10)−2(1; 1) (t = 0, 1, ...). Simulation
results with several initial points are given in Figure 1,
where the solid lines represent the corresponding trajectories.
For the sake of comparison, another simulation is also
presented in the figure, where the feedback K = (0;−2)
rendering the nominal (linear) system to be exponentially
stable was applied starting from the same initial points. These
trajectories represented by dashed lines blow up very rapidly.
This does not contradict to Theorem 4 of [14], because this
nonlinearity cannot be given in the form of (7) of [14].

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x1

x2

Fig. 1. Behavior of the trajectories.

VI. CONCLUSIONS

The paper deals with the determination of guaranteeing
cost controls for systems with quadratically constrained
uncertainties/nonlinearities. The problem is solved by an
abstract matrix multiplier method. The matrix multiplier
methods developed earlier cannot be applied to the consid-
ered type of systems. The so called full-block S-procedure
technique of [26] cannot be applied, because the set of
system uncertainty/nonlinearity is not a subspace. The results
of [2] are not applicable, either, because the inequalities to
be investigated are different from those, for which the results
of [2] are valid. The proposed method requires only that
the uncertainties should be described as a family of closed
cones parametrized by the elements of a compact set. Both
structured and unstructured uncertainties/nonlinearities are
considered. In the unstructured case, necessary and sufficient
conditions for controls to be cost guaranteeing are formulated
via LMIs, and cost guaranteeing linear feedback controls can
be determined by solving these LMIs, if the set of solutions is
feasible. The results are based on the concept of the so-called
sufficiently rich set of positive multipliers. This concept is
analogous to that given by [2]. The presented conditions are
sufficient also in the structured case. The main results of the
paper can be applied to all robustness problems, where the
systems can be formulated as considered in the paper by an
appropriate choice of the system parameters. For example,
the results generalize those developed for systems with
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positive real uncertainty. A numerical example is presented,
where the system nonlinearity is not Lipschitzian.
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