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Distributed Consensus Under Limited Information

Hagpeng Zhang and Qing Hui

Abstract— Consensus for networked control systems has a the quantized consensus must be taken into account. Quan-
significant application in civil and military applications, while  tized consensus by means of gossip algorithms is fully stud-
most of the literature focus on the research of consensus o in [8], and also the expected value of the time at which
for the networked control system with ideal measurements. th j[ d . hed i idered in [91. 110
However, in practice, those assumptions can not be guaranteed '€ qUantiZ€d CONSENSUS IS réached IS considered in [91. [10]
proper|y_ Due to the communication link and information |nVeSt|gated the Synchr0n|zat|0n Of paSSIfIab|e Lurie SyStemS
storage memory limitations, quantization consensus is more with limited-capacity communication channel, in which an
reasonable for the networked control system since the quantized output-feedback control law is proposed. It is shown that the
values are less ideal than the perfectly measured values and gy chronization error exponentially tends to zero. Moreover,
much more easier to access and transmit in practice. In this 31 developed tricall q tricall tized
paper, we present a novel quantized consensus protocol for [3] developed asymmetrically and symmetrically quantize
the networked control system and prove that near-consensus CONsensus protocols for the networked control system that
is achieved under this protocol. To obtain the exact-consensus involve the only exchange of quantized information between
for the quantized system, a distributed consensus algorithm the agents, and guarantee that the closed-loop dynamical
is further investigated. Finally, the Matlab simulations are  petwork is Lyapounov stable and convergent to a particular
provided to verify our theoretical results. L . . .

set in finite time. This paper extends the results in [3]
from continuous-time dynamical systems to discrete-time
dynamical systems. By focusing on quantized consensus for
&ié'screte—time dynamical systems and iterations, a quantized
fonsensus protocol is presented for the networked control

tem, and the overall system achieves near-consensus. On
e other hand, to obtain the exact-consensus, we present
novel distributed iteration algorithm for the networked
ntrol system. Finally, the simulation results are provided
verify our theoretical analysis.
The organization of this paper is as follows: In Section

I. INTRODUCTION

Motivated by the common nature behaviors, such as bir
and fish which can achieve formations with their informatio
interaction, more and more research focuses on the stu
of networked behaviors by mimicking the same phenomer{
exhibited from the nature. Consensus is one of such emergiﬁ
behaviors for the networked control system, which mean%g
that for each agent of the system, with the information intef©
action with its neighbors, the state of each agent can achie\{

e . .
the same value [1]. On the other hand, near-consensus_I is the _baS|c knowle_dge of graph theory and quant|zer_s
provided. The main result of the paper is presented in

a comparably weak definition of consensus, which mea . . .
P y gtctlon [ll. In Subsection llI-A, the quantized consensus

the state of each agent goes into the same bounded L X ) .
[3]. There are so many works investigating the consens gotocol is investigated and the near-consensus is achieved
: r the networked control system under such a protocol. To

problem for the networked control system with ideal measu Qr I . o . .
condition. For example, the first-order system’s consensm??ta'mhe exact-consensus, the quantized distributed iteration
property is widely studied in [6], [17], the consensus proble gonthm_ IS S_tUd'ed n Su_bsec_non ”I.'B‘ Moreove_r, the
with the second-order system is investigated by [5], [17 atlab _5|mulat|on_s are provided in Section 1V to verify our
and the average consensus is achieved for the positi eoretical analysis. I_:lnally, Section V concludes the paper
and velocity. Furthermore, instead of studying the Iinea"ﬁlnd the further work is also suggested.

consensus problem, the nonlinear consensus system attracts 1. MATHEMATICAL PRELIMINARIES

more and more attention. In particular, [4] provides a novel Graphs

stability property for the nonlinear networked control system

to achieve consensus, i.e., semistabiliy, unlike asymptotic Gliagh th(iorly IS ? pOW(IarthlL_tooI to mvesngatet:]he net-h
stability, Lyapunov stability for autonomous dynamical sysWOr e€d control systems. n this paper, we use the grap
slated notation to describe our network model. More specif-

tems does not imply the existence of a continuous Lyapuné . .
function, the semistabiliy does imply the existence of cally, let & = (.4//’66’%7) denote an undirected graph with
continuous Lyapunov function. the set of vertices/ = {vy,v2,v3,...} and& C ¥ x ¥

However, with the limited communication link and therepresent the set of edges. The mamikwith nonnegative

limited storage memory, the dynamical system cannot acces‘fjlsdj"’lcenCy elements;, serves as the weighted adjacency

store and process the full information from its neighbors sB“’“”X' The node index of the/ is denoted as a finite
P 9 " Tindex set/” = {1,2,3,...}. An edge of¥ is denoted by

e;.; = (V;,V;) and the adjacency elements associated with
H. Zhang and Q. Hui are with the Department of Mechanical Engi-, "’ (Vi, V) J y

neering, Texas Tech University, Lubbock, TX 79409-1021, USA (Email.the edges are positive. We assume < & < aij =1 and
{haopeng.zhang, ging.j@ttu.edu). a;; =0forallie /.
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If there is a path from any node to any other node in the Lemma 3.1:Assume thatC = CT and raniC = n — 1.

graph, then we call the graph e®nnectedNext, we define If 0 < K < %, then Quantized Consensus Systermisl

the connectivity matrixC for the graph. positively bounded.
Definition 2.1: Proof: Consider the nonnegative functidn(z) given
@3 = 1, otherwise, V(z)=2Tx. (5)
i hi=lm D Lt hia) 2 |2i/ua]. Then
Con & = D, Camp i=lon (@ Ve + /() - V0 (1)
k=1, k#i n
In this paper, we always assume that the topology of the _ C Bz (t
multi-agent system is connected. 2_ () Z ”) A (o5 (0) = hlz:(1)))

J=1,j#i
2

> ik = (h(ay (1) = hlai 1))

B. quantizer
we use the one-parameter family of quantizeréx) =

'Mﬁ

uq (z/un), where > 0 is an adjustable parameter. In i=1 | j=1,j7i
generalu = p(t, ) can be a function of discrete-time instant 2K
t € Z, andz. In this research, we only consider the case = N Z Z Ciijy[h(z;(t)) — h(zi(t))]
wherey is a constant. i=1 J=1.j#i
In this paper, we consider the quantizer with rectangular 2K
quantization regions. More specifically, letz) be the fol- N Z Z (25 (t)) = h(@:(t))]
lowing form ;:1 geks
, 2K
M, if 2> MA, + 5T 3O i (t) — k(1))
q(z) = —M, if 2 <—-MA, 3) i=1jek,
/A, if |x] < MA, 2K 1
= = h(zj(t)) — h(xi(t))]?
where0 < M < oo and if M < oo, then M € Z,, A ; ;v[ (5 (1)) = s (£))]
and | -] denotes the floor function which returns the greatest n e
integer less than or equal to a given real number. Thus, on +% Z Z |h(z;(t)) — h(zi(1))]
the interval(kA, (k + 1)A) of length A, wherek € Z and A~ jexs
—M <k < M, the functiong takes on the valué. In this 92 M
paper, we always assume thiaf = oo for simplicity. For +— Z Z [A(z;(t)) — h(z:(t))]
two signalsx andy, theinner-signal quantizatioris defined A i=1 jek;
to be the error of two quantized signals(z), ¢, (y), that is, n oK 9K?2
£(3u(7) = 4u(y))- =2 [— At F] [ (1)) = i (8)))
=1 jeK;
[1l. M AIN RESULT 2;{6 n
A. Inner-Signal Quantization Protocol N D IRl (1) = bl (1))] (6)
In this subsection, we consider the following consensus =1 ek
protocol with inner-signal quantization given by where K; £ N;\ Uli;i{z} andN; £ {j € {1,...,n} :
n Ciijy = 1} If [h(x;(t)) — h(xi(t))] = 0, it is easy to verify
zi(t+1) = )+ Z CupnK that (6) = 0, if not, put|h(x;(t)) —h(z:(t))| = s with s > 2
j=1,j#i for n > 3, then (6) goes as
(9 (2(1)) = qu(@:(t))] [ 2K 2K2] 2K @
n ———t | s
A A? A
= Z Clagy I )
j=1 To satisfy(6) < 0, then
:Cg(t)J B Vi(t)D oK  2K?
({MA pA _K+F§O 8
wheret € 7. is a nonnegative integefs > 0, and we (_% n 2K2> 1+ 2K a9 )
will call (4) Quantized Consensus SystemFurthermore, A A? A -

the near-consensus set for the networked control systemw'é can get that thab < K < A Thus. it follows that
defined as follows: 2" ,

Quantized Consensus Systeris positively bounded. =

Eul 2 {x € @i Cqu(zi (1) = - = qulaa(t) = k} (4) Lemma 3.2:ConsiderQuantized Consensus Systerh§-
B sume that = CT and ranlC = n—1. Then for0 < K < %,
whereVk € Z... x(t) — Ess, ASt — 00.
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Proof: Consider the nonnegative functién(x) given
by (5). Then it follows from (6) that

n 2

< DX | S| o) - o
=1 jeK;
FIE ST S s 0) = b)) (10)

and on the other hand,

Vialt + 1)/(13)) V(0 (1))
n 2
> S ¥ | S | o) - o2
K

(11)

Since,s is an integer, ther = 0 is the only solution for the

equation:
2K2 2K
{ N ] + NG 0 (12)
2K 2K

HenceV (x(t+1)/(pA))—=V (z(t)/(pA)) = 0 if and only if
h(vj) = h(v;) foralli =1,...,n,j € K;. LetR £ {z(t) €
R™: V(z(t+1)/(uA)) =V (z(t)/(pA)) = 0} = Ry, where

1) = h(zn)}

Clearly, R, = &1 and& is an invariant set for (4). Hence,
the largest invariant set contained My is 1. Now, it
follows from LaSalle invariance principle that{t) — £
ast — oo. [ |

Theorem 3.1:Assume thatC = CT and ranlC = n — 1.
Furthermore, le) < K < %. Then Quantized Consensus
System Jachieves near quantized consensus.

Ry {zr eR": h(x (14)

This theorem implies that near-consensus is achieved for

Quantized Consensus Systeraddz; € [k, k+1] forall i =
1 ,q. However, the state variables are not necessarily

PR

equal, which is weaker than the standard notion of consensus

in the literature.

Instead of the floor function quantizer fdQuantized
Consensus System Wve can obtain the similar result by
adopting the ceiling function quantizer.

Corollary 3.1: Assume that = CT and ranlC = n — 1.
Furthermore, le) < K < %. Then Quantized Consensus

System 1can achieve the quantized consensus under the <

ceiling function quantizer.
Proof: The proof of this corollary is almost identical

to that of Theorem 3.1. Therefore, we omit the proof here.
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B. Distributed Quantized Iteration Algorithm

Alternatively, we consider the consensus protocol with a
distributed quantized iteration algorithm given by

Q,u Zq t) +Zc(z,7)K
[qu (2 (1)) — qu(@i(1))]

ER

(B21-2)

BA
wheret € Z, is a nonnegative integer and > 0. We call
(15) Quantized Consensus Systepad furthermore, define

fur & {a €Tl iy f(u) = - = 2, [(u2) = k) (15)

z;(t)
BA

where Vk € Z., which is the exact-consensus for the
networked control system.

Definition 3.1: Quantized Consensus Systerachieves
exact-quantized consenswgth respect to@i if (15) is
posmvely bounded and:(t) — Ex2 ast — oo for every

(0) e Ry

Lemma 3 3:If K and A satisfy

Y Cap <1,

j=15#i

(16)

then for everyz(0) € R, z(t) € R}, forall t € Zy.
Proof: The result is trivial by mathematical induction.
[ ]
Lemma 3.4:Assume thatC = CT and rankC = n — 1.
Let n; > 1 be the number of neighbors of thith agent in
the case wher¢ is a graph. If K < A andn; K < A for
alli,7=1,...,n, 1 # j, then (15) is positively bounded.
Proof: Consider the nonnegative functidn(z) given
by

V(z) =a"a. (17)
Let h(x;) £ |2;/uA]. Then
V(a(t +1)/(ud)) = Va(t)/:8)
= 22 hw () %c(z—,j)%(h(xj(t)) i)

i=1

IDDRIPE X (h(; (1) = lxi(1)))

Jj=1,j#1i

|: Z CZJ)A 1‘7()) h(xz(t)))]
Jj=1,j#i
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2K
< Y0 Y () - b))
i=1jEK,;
K2 & )
+FZ [h(z;(t)) — h(z:(1))]
i=1jeK;
2K K
- A Y -] v - wwor
i=1jeK;
< 0 (18)
provided thatK < A, n,K < A, 4,j = 1,...,n, i #
j, and z(0) € Ry, where; 2 N\ U;Z {l} and \; 2
{7 €{1,...,n}: Cu = 1}. Thus, it follows that (15) is

positively bounded. |
Lemma 3.5:ConsiderQuantized Consensus Systermg-

sume thatC = ¢ and ranlC = n — 1. Furthermore, assume

K < Aandn;K < A, 4,5 = 1,...,n,1 # j. Then
2(t) — Ewo @St — oo for everyz(0) € R}

Proof: Consider the nonnegative functidn(z) given
by (17). Then it follows from (18) thaV’ (z(t+1)/(nA)) —
V(z(t)/(pA)) <0 provided thatl < A, n, K < A, i,j =
1,...,n, i# j, andz(0) € R}. Next, to show thatr(t) —
Eso aSt — oo, note that

V(1) (u) = V(0] (1)
> 2K ZZ (0;(1)) = h(wi(2)))?
g
+i<h<vz<tm2—i< )/ (1A)?  (19)
and - -
VIt /i) - V()02
AY Y 2= 2| 1wy (0) - mius(e)?
=
+i<h<v )= w0/A) (20
Hence,V(:z:(Z; Jlr 1)/(uA)) — X;?;(t) /(uA)) = 0 if and only

if h(v;) = h(v;) andh(v;) = v;/(pA) foralli=1,....n
j € Ki. Let R & {:v() € R : V(x (t—l—l)/(uA))—

V(a(t)/(uA)) = 0} NR, =Ry NR3 NRY,, where
Ro 4 {wER Zh(l‘l)z Zh(xn)}, (21)
Rs 2 (Mo eR":h(m)=x:/(ud)}.  (22)
i=1

Clearly,Ro NR3 DEZ = &2 and&yo IS an invariant set for
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Fig. 1.

Fig. 2. State evolution under a distributed quantized itenagilgorithm

this difference is due to the different form f@uantized
Consensus System dnd Quantized Consensus System 2
Concretely speakingQuantized Consensus Systemepre-
sents a discrete dynamical system with a quantized control
input of the formz; (k+1) = x;(k) +u, (k) while Quantized
Consensus Systenr@resents a distributed iteratian(k +

1) = f(x;(k)) with quantized state variables.

IV. SIMULATIONS

In this section, we illustrate some simulation results for the
proposed consensus protocols. Given a connected networked
control system of 19 agent, Fig.1 shows that the system
achieve the near-consensus under the inner-signal quantized
algorithm, and from Fig.2, we can conclude that the system
achieves consensus via distributed quantized iteration algo-

quantized consensus systenti2nce, the largest invariant setrithms, which verifies our theoretical results. According to

contained inR N RJF is Es2. Now, it follows from LaSalle

|nvar|ance principle that:(t) — &s2 ast — oo for every
z(0) € R [ |
Theorem 3.2:Assume thatC = CT and ranlC = n —

1. Furthermore0) < K < A. Then Quantized Consensus

System Zchieves quantized consensus with respedﬁio

Unlike Theorem 3.1, Theorem 3.2 achieve&ct-consensus

the simulations, we make the following remark.

Remark 4.1:The Quantized Consensus Systerréspec-
tively, Quantized Consensus SystenazZhieves the near-
consensus (respectively, exact-consensus) in finite-time.

V. CONCLUSIONS ANDFUTURE WORKS
In this paper, we study the quantized consensus for the net-

that is, consensus without error. It is important to note thatorked control system considering the practical information
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transmission constraint. Firstly, the inner-signal quaatiin
protocol is provided, and the dynamical system achieves
near-consensus which is a weaker notion compared to the
exact-consensus. However, to achieve the exact-consensus
for the networked control system, a novel distributed quan-
tized iteration algorithm is investigated in the paper. Our
further works are focused on the finite-time property of the
guantized consensus protocol and the distributed quantized
iteration algorithm, which has been displayed by the simula-
tions, also, the quantized consensus for double-integrators is
another future work since the fact that the double-integrator
is much more precise than the single-integrator to model the
practical multi-agent system.
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