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Abstract— According to the experiences, it is a known fact that
some essential features of normal codes are quite different for
binary and for non-binary codes. After giving some explanation
concerning this observation by referring to an old conjecture
with its partial proof, its possible extensions and restrictions,
and by giving some counterexamples in Section 3, subsequently
an interesting inequality between the minimum distance and
covering radius of normal codes is expounded in Section 4,
which provides a lucid explanation for the observed dissimi-
larity between the behavior of binary and non-binary codes.
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I. INTRODUCTION

We consider covering codes in either non-mixed or mixed
Hamming spaces denoted by H = Zn

q for non-mixed spaces,
H = Zn1

q1
Zn2

q2
, H = Zn1

q1
Zn2

q2
Zn3

q3
(etc.) for mixed spaces,

where Zq = {0, 1, . . . , q − 1}.

The Hamming distance d(x, y) between two words x, y ∈ H
is the number of coordinates in which they differ.

We continue with the definition of some coding theoretic
notions that are most important for the rest of the paper.

Definition 1: The covering radius of a code C ⊆ H is the
smallest positive integer R such that for an arbitrary x ∈ H ,
there exists one (or more) y ∈ C with d(x, y) ≤ R. In other
words,

R = max{d(x, C) | x ∈ H}

where
d(x, C) = min{d(x, y) | y ∈ C}.

Definition 2: The minimum distance dmin(C) of a code
C ⊆ H is the smallest value among the Hamming distances
between any pair of different codewords, i.e.

dmin(C) = min{d(x, y) : x, y ∈ C, x 6= y}.

(The single letter d can also be used instead of dmin(C) if
it does not cause any kind of ambiguity.)

Definition 3: Let C ⊂ H = Zn
q be a code with covering

radius R, and let i be an arbitrary index (1 ≤ i ≤ n). Let Cj

denote the set of all such codewords, whose i-th coordinate
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value is j (0 ≤ j ≤ q−1). The code C is called to be normal
with respect to the i-th coordinate if

q−1∑
j=0

d(x, Cj) ≤ qR + q − 1. (1)

holds for every x ∈ Zn
q .

A code C ⊂ H = Zn
q is called simply normal if it is normal

with respect to at least one coordinate. A code C ⊂ H = Zn
q

that is not normal is called abnormal.

A straightforward extension of Definition 3 for mixed codes
in Zn1

q1
Zn2

q2
is as follows.

Definition 4: Let C ⊂ H = Zn1
q1

Zn2
q2

be a code with
covering radius R, and let i be an arbitrary index that
corresponds to a coordinate from the first set of coordinates
(1 ≤ i ≤ n1). Let Cj denote the set of all such codewords,
whose i-th coordinate value is j (0 ≤ j ≤ q1− 1). The code
C is normal with respect to the i-th coordinate if

q1−1∑
j=0

d(x, Cj) ≤ q1R + q1 − 1. (2)

holds for every x ∈ Zn1
q1

Zn2
q2

.

Similarly, C is normal with respect to the i-th coordinate
from the second coordinate set if

q2−1∑
j=0

d(x,Cj) ≤ q2R + q2 − 1. (3)

holds for every x ∈ Zn1
q1

Zn2
q2

, where Cj are defined again
according to the value in the i-the coordinate.

We say that C is q1-normal (q2-normal) if it is normal with
respect to at least one coordinate from the first (second) set
of coordinates.

The extension of normality with respect to given coordinates
to mixed codes with arbitrary number of different qi-s is
straightforward.

Definition 5: A covering code is called optimal if it has
minimum cardinality among codes with given parameters ni

and R; the minimum cardinality is denoted by

Kq(n, R), Kq1,q2(n1, n2, R), Kq1,q2,q3(n1, n2, n3, R),

and analogous notations are used for arbitrary number of
different qis.
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II. AMALGAMATED DIRECT SUM OF NORMAL CODES

Let C ⊂ Zn1
q and D ⊂ Zn2

q be arbitrary covering codes. Let
Cj denote the set of all such codewords of C, whose last
coordinate value is j. Also, let Dj denote the set of all such
codewords of D, whose first coordinate value is j. Now, let
C ′

j ⊂ Zn1−1
q , D′

j ⊂ Zn2−1
q denote the sets whose elements

are obtained by omitting the last (first) coordinates from the
codewords contained in Cj (Dj).

The amalgamated direct sum (usually abbreviated as ADS)
of C and D is then defined as

q−1⋃
i=0

{(c′, j, d′) | c′ ∈ C ′
j , d

′ ∈ D′
j}.

It is known that within some circumstances the covering
radius of the ADS is equal to (or less than) the sum
of the covering radii of the two components. This is the
case, in particular, when C is normal with respect to its
last coordinate and D is normal with respect to its first
coordinate, see [11, Theorem 1]. The generalization of the
ADS construction to mixed codes with special regard to the
covering radius and normality is studied in [12].

Now, we concentrate to the easiest special case of the ADS
construction, i.e., to the case when one of the codes C and D
is a repetition code. It is easy to show that a q-ary repetition
code of any length n is normal with respect to all of its
coordinates. This is also the assertion of [11, Lemma 1].

Let us assume that a given q-ary code with N coordinates,
M codewords, and covering radius R,

C = { (c11, c12, . . . , c1N ),
(c21, c22, . . . , c2N ),
. . . . . . . . . . . . . . . . . .
(cM1, cM2, . . . , cMN )} ⊂ ZN

q

is normal with respect to its last coordinate. Take the
amalgamated direct sum of C with a q-ary repetition code
D having kq+1 coordinates where k is an arbitrary positive
integer, i.e., with

D = { (0, 0, . . . , 0),
(1, 1, . . . , 1),
. . . . . . . . . . . . . . . . . . . . . . . .
(q − 1, q − 1, . . . , q − 1)} ⊂ Zkq+1

q .

As arbitrary x ∈ Zkq+1
q has at least q + 1 identical coor-

dinates, and x can be chosen so that it contains either
qor q + 1 coordinates of value i for any i = 0, 1, . . . , q − 1
,consequently the covering radius of D is (kq+1)−(q+1) =

(k − 1)q.

According to a general theorem [11, Theorem 1] regarding
the covering radius of the amalgamated direct sum of normal
codes, the ADS of C and D

{ (c11, c12, . . . , c1N , c1N , . . . , c1N )
(c21, c22, . . . , c2N , c2N , . . . , c2N )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(cM1, cM2, . . . , cMN , cMN , . . . , cMN )} ⊂ ZN+kq

q

has covering radius R + (k − 1)q or less.

III. A CONJECTURE, RELATED INEQUALITIES AND
COUNTEREXAMPLES

The following conjecture for the binary case was discussed
and partially proved in [2]:

Conjecture 1: K2(n+2, R+1) ≤ K2(n, R) for all R 6= n.

The ADS construction of a binary normal code C with
a binary repetition code of three coordinates proves that
Conjecture 1 is valid in all such cases when a normal optimal
covering code exists that attains K2(n, R).

Another open question, related to Conjecture 1, is the follow-
ing: Is it always true that among the optimal covering codes
attaining K2(n, R) there exist one or more normal codes?
As regards the analogous question about non-binary codes it
can be shown easily that for q ≥ 3 any q-ary perfect optimal
covering code is abnormal. (We will return to this question
in the second note to Theorem 5 in Section IV.)

The ADS construction of a q-ary normal code with a
repetition code of q + 1 coordinates proves the following
assertion:
Proposition 1: If R 6= n and there is a normal optimal
covering code attaining Kq(n, R), then

Kq(n + q, R + q − 1) ≤ Kq(n, R). (4)

The assertion of Proposition 1 can be extended for arbitrary
types of mixed covering codes. Hereafter we formulate the
analogous inequalities for mixed ternary/binary codes, which
cover the most frequently studied type of mixed codes.

Proposition 2: If R 6= t + b and there is a 3-normal mixed
optimal covering code attaining K3,2(t, b, R), then

K3,2(t + 3, b, R + 2) ≤ K3,2(t, b, R). (5)

Proposition 3: If R 6= t + b and there is a 2-normal mixed
optimal covering code attaining K3,2(t, b, R), then

K3,2(t, b + 2, R + 1) ≤ K3,2(t, b, R). (6)

At this point the question arises spontaneously whether in-
equalities (4)-(6) are valid in general, without the hypothesis
on the existence of normal optimal codes. The answer for
this question is negative, which is evident from the following
counterexamples, taking the exact values from [6], e.g.

K3(6, 3) = 6 > K3(3, 1) = 5,
K3(8, 4) = 9 > K3(5, 2) = 8,
K4(8, 5) = 8 > K4(4, 2) = 7,
K3,2(4, 4, 3) = 10 > K3,2(1, 4, 1) = 8,
K3,2(5, 2, 3) = 7 > K3,2(2, 2, 1) = 6,
K3,2(6, 3, 5) = 4 > K3,2(6, 1, 4) = 3,
K3,2(8, 4, 7) = 4 > K3,2(8, 2, 6) = 3.

For the special case, however, when q = 2, R = 1, inequality
(4) has been proved without assuming normality, i.e., the
assertion of the following theorem is true:
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Theorem 4: K2(n+2, 2) ≤ K2(n, 1) holds for arbitrary n ≥
2.

This is essentially the same as Proposition 2.2 in [2], where
the assertion was appended by the words: “except perhaps
for n = 9 and n = 16”. These exceptional cases has been
arranged later, by proving that K2(11, 2) ≤ 44 [3] and
K2(18, 2) ≤ 2944 [13].

To close this section, we give some examples for the ap-
plication of Proposition 1 and Proposition 2. By repeated
application of the first of these, we obtain

K3(3u + 4, 2u + 1) ≤ 12,
K3(3u + 5, 2u + 1) ≤ 27

for arbitrary u ≥ 1; by repeated application of the other, we
obtain

K3,2(3u + 1, 4, 2u + 1) ≤ 10,
K3,2(3u + 1, 5, 2u + 1) ≤ 16,
K3,2(3u + 1, 6, 2u + 2) ≤ 10,
K3,2(3u + 2, 3, 2u + 1) ≤ 12,
K3,2(3u + 2, 5, 2u + 2) ≤ 12,
K3,2(3u + 3, 1, 2u + 1) ≤ 10,
K3,2(3u + 3, 2, 2u + 1) ≤ 16,
K3,2(3u + 4, 1, 2u + 1) ≤ 18,
K3,2(3u + 4, 2, 2u + 2) ≤ 11

for arbitrary u ≥ 1 again.

IV. ON THE MINIMUM DISTANCE OF NORMAL CODES

The following relation between the minimum distance and
covering radius of normal codes provides a lucid explanation
for the dissimilarity between the behavior of binary and non-
binary codes with respect to normality that was revealed in
the previous sections.

Theorem 5: Let C ⊂ Zn
q be a normal code with covering

radius R and minimum distance d; then the following in-
equality holds

d ≤ R + 1 +
R

q − 1
. (7)

Proof: According to the definition of a normal code,
inequality (1) holds for every x ∈ Zn

q . For a codeword x,
according to the definition of the minimum distance we have
d(x, Cj) ≥ d if x 6∈ Cj and d(x,Cj) = 0 if x ∈ Cj . By this,
(1) leads to the inequality

(q − 1)d ≤ qR + q − 1

which can be arranged easily to have the form (7).

Notes and conclusions.

• It is a basic coding theoretic inequality that d ≤ 2R+1
holds in general, for any code, thus (7) is always true
for binary codes, without the assumption of normality.

• A covering code is said to be perfect if d = 2R + 1.
For q ≥ 3, (7) implies that d ≤ R+1+R/2 < 2R+1.
Consequently, any non-binary perfect code is abnormal.

• Any non-binary code with covering radius R > 1 and
minimum distance d = 2R is abnormal if q > 3 or
R > 2.

Generalizations.

• A covering code is said to be subnormal if there exists a
partition of C into q nonempty subsets C0, C1, . . . Cq−1

such that (1) holds for every x ∈ Zn
q . Clearly, inequality

(7) remains valid if C ⊂ Zn
q is a subnormal code with

covering radius R and minimum distance d.
• Let C ⊂ Zn1

q1
Zn2

q2
, Zn1

q1
Zn2

q2
Zn3

q3
(etc.) be a qi-normal

code for at least one i with covering radius R and
minimum distance d. Then inequality (7) remains valid
again with a slight modification as follows. In this case,
q should be replaced in (7) by the largest such qi for
which the code C is qi-normal.
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[10] G. Kéri and P. R. J. Östergård, On the minimum size of binary codes
with length 2R + 4 and covering radius R, Des. Codes Cryptogr., 48
(2008), 165–169.

[11] A. C. Lobstein and G. J. M. van Wee, On normal and subnormal q-ary
codes, IEEE Trans. Inform. Theory, 35 (1989), 1291–1295.
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