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Abstract— A set S of points in a finite incidence structure is
said to be a two-intersection set if there are integers a < b such
that S meets every block in either a or b points (and both a, b
actually occur as intersection numbers). For point-hyperplane
designs of the classical geometries PG(k, q) such sets have been
studied extensively and related to other combinatorial objects
(maximal arcs, two-weight codes, strongly-regular graphs, par-
tial difference sets). In this paper two-intersection sets in the
coordinate projective Hjelmslev geometries PHG(k, R) over
finite chain rings R of length 2 are investigated along similar
lines.

I. INTRODUCTION

Throughout the paper R denotes a chain ring of length
2 with residue field R/RadR ∼= Fq . If q = pr, p prime,
there are exactly r + 1 isomorphism types of such rings,
the Galois ring Gq = GR(q2, p2) and r truncated skew
polynomial rings Sσq = Fq[X;σ]/(X2), σ ∈ Aut Fq . All
these rings have |R| = q2, |RadR| = q. We will write
N = RadR = Rθ = θR, where we can take θ = p if
R = Gq , respectively, θ = X if R = Sσq .

For an integer k ≥ 1 the k-dimensional (right) projective
Hjelmslev geometry over R, denoted by PHG(k,R), is
defined as the point-line incidence structure (P,L,⊆) whose
points (lines) are the free rank-1 submodules (resp. free rank-
2 submodules) of Rk+1

R (or any other free right R-module
of rank k+1) and whose incidence relation is set inclusion.1

Projective Hjelmslev geometries form an important tool
for the investigation of linear codes over finite chain rings—
just like the classical geometries PG(k, q) are used to
describe linear codes over Fq in a geometric manner. The
underlying theory has been developed in detail in [12],
followed by a study of arcs and blocking sets in projective
Hjelmslev planes [24], [13]. This and later work has unveiled
the interesting fact—well-known in the classical case—that
arcs of maximum size (i.e. point sets yielding good linear
codes) often have only few distinct intersection numbers with
hyperplanes.

This paper deals with the most important case—point sets
in PHG(k,R) with only two distinct intersection numbers
with respect to hyperplanes. In the planar case and for
selected small chain rings a study of such sets was made in
[20]. Rather than updating the tables of [20] and providing an
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1The k-dimensional left projective Hjelmslev geometry over R, defined
in an analogous way using left R-modules, is isomorphic to PHG(k,R◦),
the corresponding right projective Hjelmslev geometry over the opposite
chain ring R◦; see Remark IV.2 below.

exhaustive list of constructions, we will develop the general
theory of such sets in this paper and mention only selected
examples.

In what follows H denotes the set of hyperplanes of
PHG(k,R) (free rank k submodules of Rk+1

R ). It goes
without saying that such hyperplanes (and similarly lines and
other subspaces) are identified with subsets of the point set
P in the obvious way.

Definition I.1 Suppose a, b are integers satisfying 0 ≤ a <
b. A two-intersection set of type (a, b) in PHG(k,R) =
(P,L,⊆) is a point set S ⊆ P satisfying

{
|S ∩ H|;H ∈

H
}

= {a, b}.

Remark I.2 One-intersection sets in PHG(k,R) (defined in
the same way) are trivial: Using the (easily established) fact
that the incidence matrix of the point-hyperplane design of
PHG(k,R) is invertible over Q, it is immediate that the only
such point sets are P and ∅.

As is well-known, two-intersection sets in classical Galois
geometries PG(k, q) give rise to two-weight linear codes
over Fq , and also to strongly regular Cayley graphs (equiva-
lently, regular partial difference sets) for the additive groups
of Fq; see [6], [3], [26] for example. It was shown in [2] that
the correspondence between two-weight codes and strongly
regular graphs carries over to the case of so-called Frobenius
rings (of which chain rings are a special case), provided one
replaces the Hamming weight by the so-called homogeneous
weight. In [2] nontrivial examples of the correspondence
were given for the special case of chain rings of length
2. These examples were derived from two-intersection sets
in the planes PHG(2, R). A generalization of one of the
constructions in [2] to the higher-dimensional case can be
found in [23] and will be the subject of Example II.2.

The two-intersection sets of [2], [23] are of a very special
nature. Several further examples of two-intersection sets in
PHG(k,R) are known, of which the point sets corresponding
to the shortened Kerdock codes (“Teichmüller sets”) are
probably the most prominent representatives.

In the sequel we establish a similar correspondence—using
three-weight codes and abelian association schemes—for a
larger class of two-intersection sets.

Following common practice among coding theorists we
will make a slight notational change, PHG(k−1, R) in place
of PHG(k,R), so that from now on k matches the rank of the
“ambient module” RkR rather than the geometric dimension
of PHG(k− 1, R). We will also switch to multiset notation
for point sets in PHG(k−1, R) (by identifying S ⊆ P with
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its characteristic function K : P → N0), so that by means
of K(X) =

∑
x∈X K(x) we can assign a multiplicity to

arbitrary subsets X ⊆ P .
The geometry PHG(k − 1, R) has qk−1 · q

k−1
q−1 points

and hyperplanes, falling into qk−1
q−1 neighbour classes [x]

resp. [H] of size qk−1. Here two points x, x′ ∈ P are
neighbours (notation: x ¨ x′) if they are incident with two
distinct lines L,L′ ∈ L, and two hyperplanes H,H ′ ∈ H
are neighbours (notation: H ¨ H ′) if

{
[x];x ∈ H

}
={

[x];x ∈ H ′
}

. The incidence structure induced on the point
and hyperplane classes of PHG(k − 1, R) is isomorphic to
the point-hyperplane design of PG(k − 1, q).

For further properties of PHG(k − 1, R) (in particular
various counting formulas, which will be needed in the
sequel) we refer to [12], [16], [25].

II. EXAMPLES

Singleton point sets and their complements form trivial
2-intersection sets of type (0, 1) resp. (h − 1, h) in Π =
PHG(k − 1, R), k ≥ 2, where h = qk−2 · q

k−1−1
q−1 denotes

the cardinality of a hyperplane. Slightly less trival examples
are the neighbour classes [T ] of Hjelmslev subspaces T with
0 ≤ dimT ≤ k−2. We note that other subspaces do not form
2-intersection sets. For example, lines in PHG(k − 1, R),
k ≥ 3, intersect hyperplanes in sets of three different sizes
1, q, q2 + q.

Example II.1 Suppose k is a two-intersection set of type
(a′, b′) in the quotient plane Π ∼= PG(k− 1, q) of Π. Define
a set K of points in Π by K(x) = k

(
[x]
)

for x ∈ P (i.e.,
K is the union of all point classes in k). Then K is a two-
intersection set of type (a, b) =

(
a′qk−2, b′qk−2

)
. The map

k 7→ K will be called “lifting construction”.

We note that neighbour classes of Hjelmslev subspaces are
obtained by applying the lifting construction to subspaces of
PG(k−1, q), so that the earlier example is a special case of
Example II.1.

The next example (taken from [23]) uses so-called hyper-
plane segments, which are defined as non-empty intersections
H ∩ [x] (H ∈ H, x ∈ P). It is known that a hyperplane
segment S = H ∩ [x] forms a hyperplane of the affine space
[x] ∼= AG(k − 1, q), and that H ′ ∩ [x] ‖ S for H ′ ∈ H
iff H ′ ∈ [H]. The class [H] is called the direction of the
hyperplane segment S.

Example II.2 In each point neighbour class [x] choose a
hyperplane segment S of direction [H] in such a way that
the resulting pairs

(
[x], [H]

)
(flags of the point-hyperplane

design of the quotient geometry Π ∼= PG(k − 1, q)) form a
perfect matching of the corresponding incidence graph. The
union of all these hyperplane segments (a set of cardinality
qk−2 · q

k−1
q−1 ) is a 2-intersection set of type (a, b) with a =

qk−3(qk−2 + qk−3 + · · ·+ q2 + q), b = qk−3(qk−2 + qk−3 +
· · ·+ q2 + 2q).

Another example is related to the Z4-linear representation of
the binary Kerdock codes. For this example we need the fact
that the ring extension Gqk/Gq is free of rank k and hence
can be taken as the ambient module for PHG(k − 1,Gq).
The Teichmüller set T is defined as the set of points in
PHG(k− 1,Gq) generated by the elements of the subgroup
T ≤ G×

qk of order qk − 1. (This subgroup is uniquely

determined and cyclic.) The set T has cardinality qk−1
q−1

and forms a transversal for the point neighbour classes of
PHG(k − 1,Gq).

Example II.3 If q is even and k ≥ 3 is
odd then T is a 2-intersection set of type(
qk−2−1
q−1 − q(k−3)/2, q

k−2−1
q−1 + q(k−3)/2

)
.

This can be derived from the results in [27], [21], but we will
give an independent proof in Theorem V.7. In the planar case
Example II.3 reduces to the hyperovals of [14].

Several further examples of planar (i.e. k = 3) two-
intersection sets are known (cf. [18], [22], [20], [10]), of
which we mention only the following.

Example II.4 In PHG(2,Z9) and PHG(2,G4) there exist
two-intersection sets K of type (2, 5) respectively (2, 6),
which can be obtained as unions of orbits of a collineation
of order q2 + q + 1 (a “lifted Singer cycle”); see [18]. The
points of K in each point class form a triangle, respectively,
a quadrangle with parallel sides. The first set is a maximal
(39, 5) arc in PHG(2,Z9), and the second set is a maximal
(84, 6)-arc in PHG(2,G4); see [11], [10].

Example II.5 Suppose q = 4 (so |R| = 16), and let [z],
[M ] be a non-incident point-line pair of the quotient plane
PG(2, 4). The class [z] and the point classes on [M ] remain
empty. In each of the remaining point classes [x] choose
2 parallel line segments with direction [xz] in such a way
that the 6 line segments with a fixed direction [L] form a
hyperoval in the projective plane induced on [L]. The so-
defined set of 15 · 8 = 120 points in PHG(2, R) is a two-
intersection set of type (0, 8). For the two chain rings of
characteristic 2 this construction provides (k, 8)-arcs of the
largest known size k; see [10].

Note that in the last example K does not meet every point
neighbour class in the same number of points.

III. RESTRICTIONS ON THE PARAMETERS

Suppose K is a two-intersection set of type (a, b) in
PHG(k − 1, R), Ha =

{
H ∈ H; K(H) = a

}
, Hb ={

H ∈ H; K(H) = b
}

, na = |Ha|, nb = |Hb| and
µi =

∑
H∈H K(H)i for i = 0, 1, 2, . . . The frequencies na,

nb are computed from

na + nb = µ0 = |H| = qk−1 · q
k − 1
q − 1

,

ana + bnb = µ1 = |K| · qk−2 · q
k−1 − 1
q − 1

.
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Solving the system we obtain

na =
bµ0 − µ1

b− a
, nb =

aµ0 − µ1

a− b
. (1)

The same reasoning can be applied to any subset H′ ⊂ H
for which we can compute the corresponding moments µ′0,
µ′1.

For a 2-intersection set in the classical geometry PG(k−
1, q) the number b − a has to be a divisor of qk−2; cf. [3,
Cor. 5.5]. Here we have a similar restriction.

Theorem III.1 Let K be a 2-intersection set of type (a, b)
in PHG(k − 1, R), which is not a union of point classes
(i.e. not obtained through the lifting construction), and let d
be the g.c.d. of all numbers K(S)− K(S′), where S, S′ are
parallel hyperplane segments contained in the same point
class. Then d | qk−2 and b− a | dqk−2.

The theorem implies in particular b − a | q2(k−2), which
is also true for 2-intersection sets obtained by the lifting
construction.2

Proof: For a hyperplane class [H] and a point x ¨ H
we consider the subset H′(x) =

{
H ′ ∈ [H];x ∈ H ′

}
. Using

obvious notation we have

n′a(x) + n′b(x) = µ′0(x) = |H′(x)| = qk−2,

an′a(x) + bn′b(x) = µ′1(x) =
∑

H′∈H′(x)

K(H ′)

= qk−2K(Sx) + qk−3K
(
[H] \ [x]

)
,

where Sx denotes the hyperplane segment with direction [H]
through x. Solving for n′a(x) we obtain n′a(x) =

(
bµ′0(x)−

µ′1(x)
)
(b− a)−1 (see (1)), and for x, y ¨ H with [x] = [y]

further

n′a(x)− n′a(y) =
µ′1(y)− µ′1(x)

b− a

=
qk−2

(
K(Sy)− K(Sx)

)
b− a

.

(2)

Since n′a(x)− n′a(y) is an integer, we have b− a | dqk−2.
Now let [x] be an arbitrary point class and S the set of

hyperplane segments contained in [x] (i.e., S is the set of
hyperplanes of the affine space [x] ∼= AG(k− 1, q)). Further
let S(x) = {S ∈ S;x ∈ S}. A straightforward counting
argument yields∑
S∈S(x)

K(S) =
qk−1 − 1
q − 1

· K(x) +
qk−2 − 1
q − 1

· K
(
[x] \ {x}

)
= qk−2 · K(x) +

qk−2 − 1
q − 1

· K
(
[x]
)
.

The set S(x) contains exactly one representative from each
parallel class of hyperplane segments in [x]. Hence by
definition of d we have

∑
S∈S(x) K(S) ≡

∑
S∈S(y) K(S)

(mod d), provided only that [x] = [y]. Thus d divides
qk−2

(
K(x) − K(y)

)
in this case. Choosing x ∈ K, y /∈ K

(which is possible, since K by assumption is not a union of
point classes) we conclude that d | qk−2.

2This follows from b′ − a′ | qk−2.

IV. DUALITY

We now specialize the general duality theory for multisets
in PHG(k − 1, R) developed in [15] to the case of a 2-
intersection set K.

We apply the method of the previous section to the sets
H(x) = {H ∈ H;x ∈ H}, where x ∈ P . The numbers
na(x) = {H ∈ Ha;x ∈ H}, nb(x) = {H ∈ Hb;x ∈ H}
satisfy the two equations

na(x) + nb(x) = µ0(x) = |H(x)| = qk−2 · q
k−1 − 1
q − 1

,

ana(x) + bnb(x) = µ1(x) =
∑

H∈H(x)

K(H)

= K(x)q2(k−2) +
qk−3(qk−2 − 1)

q − 1

(
(q − 1)K

(
[x]
)

+ |K|
)
,

from which we can compute na(x), nb(x). In general these
numbers depend on K(x) and K

(
[x]
)
.

Theorem IV.1 Suppose K is a 2-intersection set in
PHG(k − 1, R), which meets every point neighbour class
in the same number of points, and x, y ∈ P are such that
K(x) = 1, K(y) = 0 (i.e. x ∈ K, y /∈ K). Then Ha
(and similarly Hb) is a 2-intersection set of cardinality na
and type (a∗, b∗) =

(
na(x), na(y)

)
in the dual Hjelmslev

geometry PHG(k − 1, R◦). Moreover, the types of K and
Ha are related by

(b− a) · (b∗ − a∗) = q2(k−2).

The two-intersection set Ha in PHG(k − 1, R◦) is called
the dual of the two-intersection set K in PHG(k − 1, R),
and denoted by K∗. Since H∗a is in turn equivalent to K,
two-intersection sets come in dual pairs.3

Proof: By assumption K
(
[x]
)

= u is a constant, so
that na(x) depends only on K(x), which takes the values 0
and 1. This shows already that Ha is a two-intersection set
in the dual Hjelmslev geometry. If x, y ∈ P are such that
K(x) = 1, K(y) = 0 then

na(y)− na(x) =
µ1(x)− µ1(y)

b− a
=
q2(k−2)

b− a
> 0,

showing that the type of Ha is
(
na(x), na(y)

)
and also the

asserted relation to the type of K.

Remark IV.2 The isomorphism between PHG(k − 1, R◦),
or rather the corresponding left projective Hjelmslev ge-
ometry Π◦ = (P◦,L◦,⊆) over R, and the dual Π∗ of
Π = PHG(k − 1, R) can be made more explicit. Writing
x · y = x1y1 + · · · + xkyk for x,y ∈ Rk and U⊥ =
{y ∈ Rk; x · y = 0 for all x ∈ U} for U ≤ RR

k, we have
that U 7→ U⊥ induces an isomorphism Π◦ ∼= Π∗; cf. [12,
Th. 3.1]. Under this isomorphism every hyperplane H ∈ H

3This does not exclude the possibility of self-dual two-intersection sets.
In fact many of the known two-intersection sets, for example those of
Examples II.2 and II.4, are self-dual.
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corresponds to a unique point Ra ∈ P◦ in Π◦, which is
determined by H = (Ra)⊥ or, viewing H as a set of points
of Π, by H = {xR ∈ P; a1x1 + · · · + akxk = 0}. The
condition Ra ∈ P◦ is equivalent to aR ∈ P (i.e. at least
one ai must be a unit in R).

Example IV.3 For even q and odd k ≥ 3 the dual T∗ of the
Teichmüller set T is again a 2-intersection set in PHG(k −
1,Gq). Its size is

na =
1
2

(
qk−1 − q(k−1)/2

)
· q

k − 1
q − 1

,

and its type is

a∗ =
1

2(q − 1)
(q2k−3 − q(3k−3)/2 − qk−2 + q(k−1)/2),

b∗ =
1

2(q − 1)
(q2k−3 − q(3k−5)/2 − qk−2 + q(k−1)/2).

In the planar case k = 3 the set T∗ has type (0, q2/2) and
forms a maximal

(
1
2 (q4 − q), q2/2

)
-arc in PHG(2,Gq).

The series of excellent Z4-linear codes constructed in [19]
is related to the sets T∗ in PHG(2,Z4).

V. RELATIONS TO OTHER COMBINATORIAL
OBJECTS

A. Linear Codes
According to [12], for any set S of points in PHG(k −

1, R) there is an associated linear code C ≤ RR
n of length

n = |S| over R. The code C is generated by a k×n-matrix
G over R, whose columns are coordinate vectors for the
points of S; it is the “left row space” of G. Defining Σ =
{g ∈ Rk; gR ∈ S}, we have ΣR× = Σ (“Σ is invariant”)
and |C| = |〈Σ〉|, where 〈Σ〉 =

∑
g∈Σ gR =

∑
gR∈S gR.

The (normalized) homogeneous weight on R is the func-
tion whom : R→ Q defined by

whom(x) =


0 if x = 0,
q
q−1 if x ∈ N \ {0},
1 if x ∈ R \N.

(3)

The function whom is extended to Rn by means of
whom(x) =

∑n
i=1 whom(xi). In the case R = Z4 = G2

it coincides with the Lee weight.4

Proposition V.1 Suppose S meets every point neighbour
class in the same number u ≥ 1 of points. Then the
corresponding code C has nonzero homogeneous weights

uqk

q − 1
and

u(qk + qk−2 + qk−3 + · · ·+ q)− q|S ∩H|
q − 1

,

where H runs through all hyperplanes of PHG(k − 1, R).

Proof: Apply [12, Th. 5.2].
Thus the number of nonzero homogeneous weights of C is
t :=

{
|S ∩ H|;H ∈ H

}
or t + 1. The first case occurs iff

there exists a hyperplane H with |S∩H| = u(qk−3 +qk−2 +
· · ·+ 1).

4For further information on homogeneous weight see [5], [17], [8].

B. Linear Association Schemes over R

Let (M,+) be a finite abelian group and D =
{D0, D1, . . . , Dt} be a partition of M into t+1 sets satisfy-
ing D0 = {0} and Di = −Di for all i. Define relations (i.e.,
Cayley graphs) Gi on M by (x, y) ∈ Gi ⇐⇒ x− y ∈ Di.
Recall that G = {G0, G1, . . . , Gt} is said to be an abelian
t-class asssocation scheme (with relations Gi and abelian
classes Di) on M if for x, y ∈ M and 0 ≤ i, j ≤ t the
number of elements z ∈ M such that (x, z) ∈ Gi and
(z, y) ∈ Gj depends only on the relation Gk to which (x, y)
belongs, but not on the particular choice of x, y.

Here we are interested in abelian association schemes on
the additive group of a finite (right) R-module MR. We
further require DiR

× = Di, i.e. the abelian classes (and
hence also the relations Gi) should be invariant under the
action of R×. Abelian association schemes with this property
are said to be linear over R.

Abelian association schemes are best described in terms
of the characteristic functions δDi

: M → C of their
abelian classes Di. The set CM = CM of all functions
f : M → C forms a C-algebra in two different ways, first
with respect to the point-wise multiplication (“Hadamard
product”) (f · g)(x) = f(x)g(x) and second with respect
to the group algebra multiplication (“convolution”) (f ∗
g)(x) =

∑
y∈M f(y)g(x − y); the latter is simply the C-

linear extension of the rule δx ∗ δy = δx+y for x, y ∈M .5

Now D = {D0, D1, . . . , Dt} defines an abelian associ-
ation scheme iff the C-subspace generated by δD0 , δD1 ,
. . . , δDt

, which is obviously a subalgebra of (CM, ·), also
is a subalgebra of (CM, ∗). This property in turn can be
succintly expressed using complex characters of (M,+). For
characters χ, ψ we write χ ∼ ψ if χ(Di) = ψ(Di) for
0 ≤ i ≤ t.6 Since ∼ is an equivalence relation on the
character group M̂ of (M,+), it induces a partition D̂ of
M̂ .

Fact V.2 We have |D̂| ≥ |D| with equality iff D defines an
abelian association scheme on M .

Proof: We sketch a proof of this important fact. Other
proofs can be found in [7], [4].

The characters in M̂ , scaled by 1
|M | , form a complete

set of primitive idempotens of (CM, ∗), so that (CM, ∗) ∼=
(CM, ·) and any bijection M̂ → {δx;x ∈ M} extends
linearly to an isomorphism from (CM, ∗) to (CM, ·).

The subalgebras of (CM, ·) are easily described. They
are in one-to-one correspondence with the partitions P =
{P1, . . . , Ps} of M , where for such a partition P the
functions δP1 , . . . , δPs

are the primitive idempotents of the
corresponding subalgebra AP . Elements x, y ∈M belong to
the same member of P iff f(x) = f(y) for all f ∈ AP .

Using this and the representation δDi
=

|M |−1
∑
ψ∈cM ψ(Di)ψ we find that the dimension of

5We write δX for the characteristic function of X ⊆ M and use the
shorthand δx in place of δ{x}.

6Here it is understood that a character χ is extended to CM by means
of χ(f) = χ

`P
x∈M f(x)δx

´
=
P

x∈M f(x)χ(x).
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the subalgebra generated by δD0 , δD1 , . . . , δDt
is equal to

|D̂|. Fact V.2 now easily follows.

C. The Budapest Connection

In this subsection we assume that S is a set of points in
PHG(k− 1, R) which meets every point neighbour class in
the same number u of points; in particular |S| = u(qk−1 +
qk−2 + · · · + 1). In order to avoid trivialities we assume
further 1 ≤ u ≤ qk−1 − 1. Then the associated set Σ of
vectors in Rk (cf. Section V-A) generates RkR. The linear
code C ≤ RR

n associated with S (cf. again Section V-A is
free of rank k, and the rows of G form a basis of C. (This
follows from |C| = |〈Σ〉| = |R|k.)

We fix a generating character χ of R (i.e. an additive
character of R whose restriction to N is nontrivial) and
denote the standard inner product of two vectors x,y ∈ Rk
by x·y (as in Remark IV.2). Then every character of (Rk,+)
has the form χa : Rk → C×, x 7→ χ(a · x) for a unique
vector a ∈ Rk. The following lemma, which relates the
homogeneous weight of a typical codeword aG ∈ C to the
value of the character χa at Σ, is fundamental.

Lemma V.3 For a ∈ Rk we have

whom(aG) = |S| − χa(Σ)
|R×|

.

Proof: Using the formula whom(x) = 1 −
1
|R×|

∑
u∈R× χ(xu) for x ∈ R established in [9], we have

whom(aG) =
∑

gR∈S
whom(a · g)

=
∑

gR∈S

(
1− 1
|R×|

∑
u∈R×

χ(a · gu)

)

= |S| − 1
|R×|

∑
gR∈S

∑
u∈R×

χa(gu)

= |S| − 1
|R×|

∑
x∈Σ

χa(x),

proving the lemma.
The equation a · x = a1x1 + · · · + akxk = 0 determines a
hyperplane H of PHG(k−1, R), provided that a ∈ Rk\Nk.
If a ∈ Nk \ {0}, then a = θa′ for some a′ ∈ Rk \ Nk

and a · x = 0 determines exactly those points which are
neighbours to the hyperplane H ′ with equation a′ · x = 0.

Lemma V.4

χa(Σ) =


u(qk+1 − q) if a = 0,
−uq if a ∈ Nk \ {0},
q2|S ∩H| − u(qk−q)

q−1 if a ∈ Rk \Nk,

where in the last case H denotes the hyperplane in PHG(k−
1, R) with equation a · x = 0.

Proof: The lemma can be derived from [12, Th. 5.2]
(see Prop. V.1) and Lemma V.3, but we give a direct proof.

We have χ(0) = 1, χ
(
N \ {0}

)
= χ(N) − χ(0) = −1,

χ(R \N) = χ(R)− χ(N) = 0.
If a = 0, then χa(Σ) = |Σ| = |Σ||R×| = u · q

k−1
q−1 · (q

2 −
q) = u(qk+1 − q). For the other cases we use the formula

χa(Σ) =
∑

gR∈S

∑
u∈R×

χ
(
(a · g)u

)
.

If a ∈ Nk \ {0}, then defining H ′ as above we obtain

χa(Σ) = |R×| ·#{gR; gR ¨ H ′} − q ·#{gR; gR 6¨ H ′}

= (q2 − q) · u(qk−1 − 1)
q − 1

− q · qk−1u

= −uq.

If a ∈ Rk \Nk, then

χa(Σ) = |R×| · |S ∩H| − q ·#{gR; gR ¨ H ∧ gR /∈ H}

= (q2 − q)|S ∩H| − q
(
u(qk−1 − 1)

q − 1
− |S ∩H|

)
,

which simplifies to the formula stated in Lemma V.4.
We are now ready to state the main result of this paper.

For S ⊆ P we write S = P \ S and define Σ accordingly,
i.e. Σ = {h ∈ Rk \Nk; hR /∈ S}.

Theorem V.5 Let S be a set of points in PHG(k − 1, R)
meeting every point neighbour class in the same number of
points. Then the following are equivalent.

(i) S (or S) is a two-intersection set;
(ii) Σ, Σ, Nk \ {0}, {0} determine an abelian 3-class

association scheme on (Rk,+).
(iii) The code C \ θC has exactly two (nonzero) homoge-

neous weights w1 < w2.
Moreover, if S satisfies these conditions then the two sets
Ci = {x ∈ C \ θC; whom(x) = wi}, i = 1, 2, together with
θC \ {0} and {0} determine an abelian 3-class association
scheme on (C,+), which is dual to the scheme in (ii).

Proof: Suppose first that (i) holds. Then S 6= ∅ and
S 6= ∅, so that the four sets in (ii) form a partition S of Rk.7

Let Ŝ be the corresponding partition of the character group
of (Rk,+). Using the group isomorphism a 7→ χa we may
view Ŝ as a partition of Rk. Clearly χa

(
{0}
)

= 1 for every
a ∈ Rk and

χa

(
Nk \ {0}

)
=

{
qk − 1 if a ∈ Nk,

−1 if a ∈ Rk \Nk.
(4)

Applying Lemma V.4 to Σ and Σ and using the fact that
|S ∩H| determines |S ∩H|, we see that the members of Ŝ
are unions of the four sets {0}, Nk \ {0}, ∆a = {a ∈ Rk \
Nk; |S ∩H| = a}, and ∆b = {a ∈ Rk \Nk; |S ∩H| = b}.8
Now Fact V.2 implies that Ŝ =

{
{0}, Nk\{0},∆a,∆b

}
and

S determines an abelian 3-class association scheme. Thus (i)
implies (ii).

7They are obviously distinct, and S, S 6= ∅ implies Σ,Σ 6= ∅.
8Here (a, b) denotes the type of S as a two-intersection set, and H

denotes the hyperplane with equation a · x = 0.
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For a proof of the reverse implication we note that (4) and
a straightforward argument imply that Ŝ contains {0} and
Nk \ {0}. Hence, if |S ∩H| takes at least 3 distinct values
then |Ŝ| ≥ 5 and S cannot yield an association scheme. Thus
(ii) implies (i).

The equivalence of (i) and (iii) follows from Lemma V.3,
Lemma V.4, and aG ∈ C \ θC ⇐⇒ a ∈ Rk \Nk.

Finally suppose S satisfies (i), (ii), (iii). Then S ={
{0}, Nk \ {0},Σ,Σ

}
and Ŝ =

{
{0}, Nk \ {0},∆a,∆b

}
determine dual abelian schemes. The module isomorphism
RR

k → C, a 7→ aG takes Ŝ to C =
{
{0}, θC \

{0}, C1, C2

}
. Hence the latter also determines an abelian

scheme dual to that determined by S.

Remark V.6 Theorem V.5 does not exclude the case in
which C is itself a homogeneous two-weight code. This
happens precisely when the nonzero codewords in θC, a
“simplex code”, have weight w2. Using Lemma V.4 (or
Prop. V.1) it can be easily checked that this is equivalent
to S being of type (a, b) with a = u(qk−3 + qk−4 + · · ·+ 1).
In this special case we can “fuse” the corresponding two
members of S, Ŝ, or C to obtain a pair of dual abelian
3-class association schemes (equivalently, strongly regular
Cayley graphs or regular partial difference sets) on a group
isomorphic to (Rk,+); see [2]. The examples in [2] have
k = 2, a = 0 and k = 3, a = u ∈ {1, q}.

As an example application of Theorem V.5 we now provide
a proof that the Teichmüller set T (see Example II.3) in
a projective Hjelmslev geometry of even dimension over a
Galois ring G2r of characteristic 4 is a two-intersection set
and compute its parameters.

Theorem V.7 Suppose q = 2r, k ≥ 3 is odd, T is the
Teichmüller subgroup of G×

qk , M = Rad(Gqk) = 2Gqk , and
T is the set of points determined by T in PHG(k − 1,Gq).

(i) The four sets Σ = G×q T , Σ = G×
qk \ Σ, M \ {0}, and

{0} determine an abelian 3-class association scheme
on the additive group of Gqk .

(ii) The Teichmüller set T is a two-intersection set of type(
qk−2−1
q−1 − q(k−3)/2, q

k−2−1
q−1 + q(k−3)/2

)
.

Proof: (i) We have to show that A = CδΣ +
CδΣ + CδM\{0} + Cδ0 is a subalgebra of the group algebra
(CGqk , ∗) of (Gqk ,+). Since A is generated as a C-subspace
by δ0, δM , δΣ, and δR (where R = Gqk ), it suffices to
verify that products of these elements are again in A. This
is clear9 for all products except δM ∗ δΣ and δΣ ∗ δΣ. For
the former it is easy to verify (using Σ = T (1 + N)) that
δM ∗δΣ = qδR\M ∈ A. For the latter we invoke Lemma VI.1
in the appendix, which implies

δΣ∗δΣ = (q2−2q)δΣ +q2δΣ +(q2−q)δM\{0}+q(qk−1)δ0.
(5)

Hence δΣ ∗ δΣ ∈ A and the proof of (i) is complete.

9Note that δ0 is the identity of (CGqk , ∗), δM is an idempotent up to
scaling, and δR generates a 1-dimensional ideal of (CGqk , ∗).

(ii) By (i) and Theorem V.5, the set T is a two-intersection
set.

In order to determine the type (a, b) of T, we apply
Lemma V.4. The characters of (Gqk ,+) which correspond
to χa, a ∈ Rk \Nk are those which are nontrivial on M . If
ψ is such a character, then ψ(Σ) + ψ(Σ) = ψ(R \M) = 0,
ψ
(
M \ {0}

)
= −1. Applying ψ to (5) we find

ψ(Σ)2 = (q2 − q)ψ(Σ)− ψ(Σ)− (q2 − q) + q(qk − 1)

= −2q · ψ(Σ) + qk+1 − q2,

and hence ψ(Σ) = −q ± q(k+1)/2. So Lemma V.4 gives

|T ∩H| = q−2

(
−q +

qk − q
q − 1

± q(k+1)/2

)
=
qk−2 − 1
q − 1

± q(k−3)/2

as asserted.
Theorem V.7 does not hold for the projective Hjelmslev
geometries of odd dimension ≥ 3 over G2r ; cf. Remark VI.2
in the appendix.10

VI. APPENDIX

In this section we provide a combinatorial lemma about
odd-degree extensions Gqk/Gq of Galois rings of character-
istic 4, i.e. with q = 2r and k odd. This lemma generalizes
[1, Th. 1] and is needed for Example II.3 (see Theorem V.7).

Lemma VI.1 Let Gqk/Gq , q = 2r, be an extension of
Galois rings of characteristic 4 of odd degree k ≥ 3,
let T be the Teichmüller subgroup of Gqk , Σ = TG×q ,
and Σ = G×

qk \ Σ. For γ ∈ Gqk set nγ = #
{

(x, y) ∈
Σ× Σ;x+ y = γ

}
. Then

nγ =


(qk − 1)q if γ = 0,
q2 − q if γ ∈ 2Gqk \ {0},
q2 − 2q if γ ∈ Σ,
q2 if γ ∈ Σ.

Proof: We represent Gq , q = 2r, as the ring W2(Fq)
of Witt vectors of length 2 over Fq , which has underlying
set F2

q and operations

(a0, a1) + (b0, b1) = (a0 + b0, a1 + b1 + a0b0),

(a0, a1) · (b0, b1) = (a0b0, a
2
0b1 + b20a1);

cf. for example [14]. The extension ring Gqk is represented
in the same way as W2(Fqk). The Teichmüller subgroup
of W2(Fqk)× is T =

{
(α, 0);α ∈ F×

qk

}
. The group Σ ≤

W2(Fqk)× is generated by T and W2(Fq)× or, alternatively,
by T and 1 + 2W2(Fq); thus

Σ =
{

(α, 0)(1, a);α ∈ F×
qk , a ∈ Fq

}
=
{

(α, α2a);α ∈ F×
qk , a ∈ Fq

}
=
{

(γ0, γ1) ∈W2(Fqk)×; γ1/γ
2
0 ∈ Fq

}
.

10For the projective Hjelmslev line PHG(1,Gq) it holds trivially.
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The integer nγ , γ = (γ0, γ1) ∈ W2(Fqk), is the number of
solutions of

α+ β = γ0

α2a+ β2b+ αβ = γ1

(6)

in α, β ∈ F×
qk , a, b ∈ Fq . For γ0 = 0 the system (6) reduces

to α = β∧α2(a+b+1) = γ1 which has (qk−1)·q solutions
if γ1 = 0, respectively, 1 · (q2 − q) solutions if γ1 6= 0.

Now assume γ0 6= 0. Substituting β = γ0 + α into the
second equation of (6) gives α2a+(γ0 +α)2b+α(γ0 +α) =
α2(a + b + 1) + αγ0 + γ2

0b = γ1 and, writing α′ = α/γ0,
u = a+ b+ 1, further

uα′2 + α′ = γ1/γ
2
0 + b. (7)

From α, β ∈ F×
qk we have the condition α′ /∈ {0, 1} = F2,

but otherwise α′ can be arbitrary in Fqk . Thus nγ is equal
to the number of solutions (α′, u, b) ∈ (Fqk \ F2)× Fq × Fq
of (7). Now we consider two subcases.

Case 1: u = 0. Here (7) has q− 2 solutions if γ ∈ Σ (for
then γ1/γ

2
0 ∈ Fq and the right hand side of (7) can be equal

to 0, 1) and q solutions if γ ∈ Σ.
Case 2: u 6= 0. Here we multiply (7) by u to obtain

(uα′)2+uα′ = u(γ1/γ
2
0 +b) and use the fact that the additive

homomorphism Fqk → Fqk , x 7→ x2 + x is two-to-one with
image V0 =

{
y ∈ Fqk ; Tr(y) = 0

}
and kernel F2, where Tr

denotes the trace from Fqk to F2. Moreover, since k is odd,
we have |V0 ∩ (c+ Fq)| = q/2 for every c ∈ Fqk .

If γ ∈ Σ then u(γ1/γ
2
0 + b), (u, b) ∈ F×q × Fq represents

each element of Fq (and hence of V0∩Fq) exactly q−1 times,
so that there are 2 · q2 · (q − 1)− 2(q − 1) = (q − 1)(q − 2)
solutions. (The term −2(q − 1) accounts for the fact that
solutions with α′ ∈ F2 are not counted.)

If γ ∈ Σ, then u(γ1/γ
2
0 + b), (u, b) ∈ F×q × Fq represents

the elements in q − 1 (disjoint) additive cosets of Fq in Fqk

exactly once. Since |V0 ∩ (c + Fq)| = q/2 for each such
coset and Fq is not among these cosets (so all solutions are
counted), there are 2 · q2 · (q− 1) = (q− 1)q solutions in this
case.

So alltogether (7) has q − 2 + (q − 1)(q − 2) = q2 − 2q
solutions if γ ∈ Σ, and q+(q−1)q = q2 solutions if γ ∈ Σ.
This completes the proof of the lemma.

Remark VI.2 For extensions of even degree k ≥ 4 of Galois
rings of characteristic 4 the map γ 7→ nγ is not constant
on Σ. In this case TrF

qk/Fq
(γ1/γ

2
0), γ ∈ Σ (i.e. γ1/γ

2
0 ∈

Fqk \Fq) takes both zero and nonzero values, and the number
of solutions (u, b) ∈ F×q × Fq of TrF

qk/F2

(
u(γ1/γ

2
0 + b)

)
=

TrFq/F2

(
u · TrF

qk/Fq
(γ1/γ

2
0)
)

= 0 depends on whether
TrF

qk/Fq
(γ1/γ

2
0) = 0 or 6= 0.
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