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Abstract— A group-theoretical approach is used to tackle
both the problem of local accessibility and observability along a
trajectory for a class of first-order PDE systems with boundary
control and observation. Based on an intrinsic formulation
including boundary terms (local) criteria are derived in form
of equivalence problems, where existence and/or non-existence
of (pointwise) transformation groups and their invariants is
related to (non-)observability and/or (non-)accessibility of PDE
systems, respectively. Examples demonstrate the theory and
results.

Index Terms— differential geometry, infinite-dimensional sys-
tems, nonlinear systems, accessibility, observability.

I. I NTRODUCTION

Control systems described by partial differential equations,
or PDE systems for short, can arise in several different
disciplines if certain phenomena are modeled, for instance
transportation delays, spatially-distributed parameters and
the like. Examples can be found in various fields such
as continuum mechanics, thermodynamics, economics and
finance. A system-theoretical analysis of PDE systems is
much more involved in comparison to systems described by
ordinary differential equations, or ODE systems for short,
because new effects appear which are unknown in the finite-
dimensional case, see, e.g., [1], [2], [3], [4]. In this article we
propose an approach by means of transformation groups and
their invariants to tackle both the problem of observability
and accessibility along a trajectory. The basic questions for
the problems are different in principle, because invariants
of groups are either known or unknown, but both cases
can be treated with the same mathematical tool. In previous
publications, see, e.g., [5], [6], [7] and references therein,
a similar approach was successfully applied to dynamic
systems, whose evolution along continuous or discrete time
is governed by nonlinear (explicit and implicit) ordinary
differential equations or difference equations. Especially, we
highlight that the concepts and ideas can also be transferred
to PDE systems, and observability/accessibility criteria can
be derived in a successive manner. Of course, the check of
these criteria becomes much more comprehensive in contrast
to ODE systems.

In the literature observability and accessibility are well-
studied for particular (nonlinear) PDE systems, see, e.g., [1],
[2], [3], [8], [4] and references therein, just to name a few.
To the knowledge of the authors there are not many results
for broader classes of (nonlinear) PDE systems. Differential
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geometric methods have emerged as a useful tool to study
PDE systems, see, e.g., [9], [10], [11], [12] and references
therein, where all results rely on an intrinsic formulation
of dynamic systems. However, mostly important aspects are
missing, for instance, boundary conditions, boundary system
inputs and outputs. In this contribution we first present a
coordinate-independent formulation for a class of first-order
PDE systems including boundary terms, namely we associate
the system (equations) with a so-called generalized vector
field with boundary conditions, or alternatively, with a pair
of submanifolds, containing all possible solutions of the
system. Then, in the main part of the work we discuss
the observability and the accessibility along a trajectory in
general. It is shown that based upon the intrinsic picture of
PDE systems observability and accessibility criteria can be
derived in the same manner by using a so-called infinitesimal
criterion for invariance. It is worth mentioning that neither a
systematic method for checking the criteria nor the topic of
optimal sensor and actuator placement are addressed within
this contribution. With respect to previous publications, see,
e.g., [13], [14], [15] we provide additional results for PDE
systems, especially, with boundary control and observation.
It is worth mentioning that the formulation and the analysis
approach can be adopted to consider (coupled, higher-order)
PDE systems with various boundary conditions as well.

The article is organized as follows. In Section II the in-
trinsic formulation for dynamic systems under consideration
is introduced. In Section III observability and accessibil-
ity are discussed and an approach is motivated by using
transformation groups. Based on the geometric picture of
systems in Section IV it is outlined how (local) criteria for
(non-)observability and (non-)accessibility along a trajectory
can be derived by studying group invariants and utilizing an
infinitesimal criterion for invariance. To illustrate the theory
nonlinear examples are arranged in Section V. Finally, the
contribution finishes with some conclusions. The utilized no-
tation and relevant mathematical preliminaries are introduced
when necessary and/or can be found in the appendix. In the
contribution we particularly apply well-known concepts from
the field of differential geometry, where the interested reader
is referred to, e.g., [9], [11], [16] for an introduction and
much more details.

II. PDE SYSTEMS AND INTRINSIC REPRESENTATION

In the article we confine ourselves to control systemsΣ
described (in coordinates) by a set ofn first-order PDEs

ẋβ = fβ(X i, xα, xα
j ) , β = 1, . . . , n . (1a)
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Unlike for ODE systems a success of the group approach for
PDE systems depends here on a considerable extent to the
accompanying boundary conditions

gν(X i, xα, uκ) = 0 , ν = 1, . . . , b (1b)

and boundary output functions

yζ = hζ(X i, xα, uκ) , ζ = 1, . . . , l . (1c)

Here,X =
(
X i

)
, i = 1, ..., q are the (spatial) coordinates on

the domainD, which is supposed to be a compact manifold
with global volume form and coherently orientable boundary
∂D. Moreover, we assume thatX∂ =

(
X i

)
, i = 1, . . . , q−1

are the (spatial) coordinates on∂D. Basically, the bundles
X → D, U → ∂D, Y → ∂D are applied with independent
coordinatesX =

(
X i

)
and dependent coordinatesx = (xα),

α = 1, ..., n, u = (uκ), κ = 1, ...,m and y =
(
yζ
)
,

respectively. In this setting the timet is considered as an
evolution parameter and not as a coordinate. In addition, the
jet bundleJ1(X ) → X is introduced to include derivative
coordinatesxα

j , j = 1, ..., q in the formalism. To consider
boundary terms1 the restricted bundleι∗(X ) → ∂D is
utilized with an embeddingι : ∂D → D, see, e.g., [11,
Definition 1.4.8], where a sectionγ ∈ Γ(D,X ) implies a
sectionγ∂ = γ ◦ ι ∈ Γ (∂D, ι∗ (X )), which is also denoted
γ for short.

In order to avoid any mathematical irregularities from now
on all manifolds are smooth manifolds and the functionsfβ,
gν , hζ depend smoothly on their arguments2. If the latter
assumptions do not hold, the presented methods do not loose
their validity; hence often many distinction of cases can be
avoided. For brevity and readability, the Einstein summation
convention is utilized throughout the article and the ranges
of the indices as well as the arguments of functions are not
always stated explicitly if they are clear from the context.

The intrinsic formulation of the systemΣ is obtained
by the assumption that the equations (1a) define (locally)
a generalized vector field3 J1 (X ) → π1,∗

0 (V (X )) or,
alternatively, a submanifoldS ⊂ π1,∗

0 (V (X )) with fβ ∈
C∞

(
J1 (X )

)
, and the equations (1a), (1b) (locally) a fibred

(regular) submanifoldS∂ ⊂ ι∗(X ) ×∂D U with gν ∈
C∞ (ι∗(X ) ×∂D U). In addition, we suppose that locally the
output equations (1c) define a fibred (regular) submanifold
N ⊂ ι∗(X )×∂D U ×∂D Y with hζ ∈ C∞ (ι∗(X )×∂D U).

Remark 1 The formalism includes boundary conditions
and, thus, leads to the definition of a pair of submanifolds
(S,S∂) in comparison to, e.g., [9], [10], where no boundary
conditions are considered.

A solution of the systemΣ on the time interval[0, T ] ⊂ R

is given by maps

(γ, η) : [0, T ] → Γ(D,X )× Γ(∂D,U) (2)

1Note the abuse of notation since we also write∂D when the boundary
conditions are only defined on a part of∂D.

2Solutions do not have to be smooth.
3The concept of a pull-back bundle is applied here, see, e.g., [11,

Definition 1.4.5], whereof a restricted bundle is a special case.

such thatγ(t) : D → X , η(t) : ∂D → U are sections of
the bundlesX → D, U → ∂D at time instancet ∈ [0, T ],
respectively, and the equations

∂

∂t
γβ(t)(X) = fβ ◦ j1(γ)(t)(X)

0 = gν ◦ (γ, η)(t)(X∂),

are satisfied with the initial conditionγ(0) and the inputη(t).
The output follows to

yζ = ϑ (t) (X∂) = hζ ◦ (γ, η)(t)(X∂)

with ϑ = h ◦ (γ, η) : [0, T ] → Γ (∂D,Y) such thatϑ (t) ∈
Γ (∂D,Y) is a section of the bundleY → ∂D.

For the analysis we suppose that solutions of the systemΣ
are well-posed in the sense of Hadamard, see, e.g., [17], i.e.,
there are appropriate function spaces for trajectories(γα) ∈
Ft ([0, T ] ,FD), for inputs (µκ) ∈ FU and for outputs
(
hζ ◦ (γ, η)

)
∈ FY , whereFD denotes a function space

for functions defined on the domainD andFt ([0, T ] ,FD)
for the evolution in time. In addition, we suppose a locally
solvable system, i.e., there are no hidden equations leading
to the definition of a smaller submanifold̄S∂ ⊆ S∂ .

III. D EFINITIONS, MOTIVATION AND TRANSFORMATION

GROUPS

For the sake of completeness let us recall well-known
definitions of observability and accessibility along a fixed
trajectory for PDE systems. For ODE systems it is well
known that in general both properties depend on the system
trajectory, see, e.g., [18], [7], and, thus, for PDE systems
we associate the observability property and the accessibility
property with a fixed trajectory. In particular, it is assumed
that there exists a solution4 (γ, η) of the systemΣ on the
time interval[0, T ] with initial conditionγ (0) = γ0 and end
conditionγ (T ) = γT .

Let us first introduce the following definitions.

Definition 1 An initial condition γ̄0 is said to beindistin-
guishable along the trajectory(γ, η), written γ0 ∼ γ̄0, if for
all t ∈ [0, T ] the same outputh ◦ (γ, η) (t) = h ◦ (γ̄, η) (t)
(for the same input) follows.

Definition 2 An end condition̄γT is said to bereachable
along the trajectory(γ, η), written γT  γ̄T , if there is an
input η̄ to steer the systemΣ from γ0 to γ̄T , i.e., there is a
solution (γ̄, η̄) with γ̄ (0) = γ0 and γ̄ (T ) = γ̄T .

By means of the previous definitions we able to define the
properties observability and accessibility along a trajectory.

Definition 3 (Observability along a trajectory) A system
Σ is said to be (locally)observable along the trajectory
(γ, η), if there is an open neighborhoodVγ0

of γ0 such that
for every open neighborhoodUγ0

of γ0 contained inVγ0

4Otherwise we have to study a two-point boundary problem for (nonlin-
ear) systemsΣ, which might not have a solution at all, to determine whether
all subsequent investigations are reasonable or not.
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and γ̄0 ∈ Uγ0
with γ̄0 ∼ γ0 implies γ̄0 = γ0, otherwise the

system is said to be (locally)non-observable.

Definition 4 (Accessibility along a trajectory) A system
Σ is said to be (locally)accessible along the trajectory
(γ, η), if there is an open neighborhoodVγT

of γT such that
for every open neighborhoodUγT

of γT contained inVγT

and γ̄T ∈ UγT
it follows γT  γ̄T , otherwise the system is

said to be (locally)non-accessible.

According to the previous definitions both properties are
defined locally with respect to a fixed trajectory and serve
as the basis for our subsequent investigations. Hence, it is
worth noting that also different (stronger and weaker) notions
of observability and accessibility along a trajectory can be
used, see, e.g., [13], [19].

In [20] the concept of so-called similarity transformations
is used to study properties of (nonlinear) ODE systems. Here,
we follow a similar approach for PDE systems.

Remark 2 Let (γ, η) be a solution of the systemΣ on
the time interval[0, T ] and consider all possible (pointwise)
variations of the form5

(X i, γ̄α(t)(X i)) = ϕX

(
t, X i, γα(t)(X i)

)

(X i, η̄κ(t)(X i)) = ϕU

(
t, X i, ηκ(t)(X i)

)
.

(3)

such that the distorted solution(γ̄, η̄) is another solution of
the systemΣ. If there is one variation (3) such that the input
and the output remain invariant,

η (t) (X∂) = η̄ (t) (X∂)

h ◦ (γ, η) (t) (X∂) = h ◦ (γ̄, η̄) (t) (X∂) ,
(4)

the systemΣ is non-observable because the initial condi-
tions6 γ (0) = γ0, γ̄ (0) = γ̄0 are indistinguishable along the
trajectory(γ, η). If there is an invariant7 of the form

I (γ (t)) = It ◦ γ (t) (X) = It ◦ γ̄ (t) (X) (5)

or

I (γ (t)) =
∫

D
It ◦γ (t) (X) dX =

∫

D
It ◦ γ̄ (t) (X) dX (6)

with I : [0, T ] → C∞ (X ), I (t) = It ∈ C∞(X ) and
dX = dX1 ∧ · · · ∧ dXq, remaining invariant despite all
possible variations, the systemΣ is non-accessible because
end conditionsγ̄T with IT ◦ γT (X) 6= IT ◦ γT (X) or
∫

D
IT ◦ γT (X) dX 6=

∫

D
IT ◦ γT (X) dX are non-reachable

along the trajectory(γ, η). Since (5) implies an invariant (6),
we consider only invariants of the form (6).

Let us consider the output mapO and the accessibility
mapAT for the observability problem and the accessibility

5Note that input functions are considered as functions of time, which
are produced, for instance, by feedback control laws, and the properties
observability and accessibility are invariant under feedback.

6The initial conditions are different because of the uniqueness of solu-
tions.

7Also different types of invariants can be studied.

problem, respectively, which are defined by8

O : Γ (D,X ) × Γ[0,T ] (∂D,U) → Γ[0,T ] (∂D,Y) ;

(γ0, η) 7→ h ◦ (γ, η)
(7)

and

AT : Γ (D,X ) × Γ[0,T ] (∂D,U) → Γ (D,X ) ;

(γ0, η) 7→ γT
(8)

where (γ, η) solves the systemΣ. The map O relates
the initial condition and the input to the associated out-
put, whereas the mapAT relates the initial condition
and the input to the associated end condition at time
instance T . The local observability problem is equiva-
lent to the local injectivity ofOη = O (·, η) : Vγ0

⊂
Γ (D,X ) → Γ (D,X ) and in case of non-observability the
set of indistinguishable initial conditions readsISγ0

=
{γ̄0 ∈ Vγ0

: Oη (γ0) = Oη (γ̄0)}. The local accessibility
problem is equivalent to the local surjectivity ofAT,γ0

=
AT (γ0, ·) : Vη ⊂ Γ[0,T ] (∂D,U) → Γ (D,X ) and in case of
non-accessibility the set of reachable end conditions reads
RSγ0

= {γ̄T ∈ VγT
: ∃η̄ ∈ Vη AT,γ0

(η̄) = γ̄T } and we
may look for invariantsIV ⊂ C∞ (X ) describingRSγ0

.
The key idea is now to parametrize the setsISγ0

andRSγ0

via 1-parameter (pointwise) Lie groups of transformation
fulfilling the properties of admissible variations (3) for each
group parameter and to consider group invariants of interest.

Remark 3 The approach for tackling both problems is sim-
ilar, hence, the basic questions are different in principle.
Besides the system equations all invariants of the groups
are known for the observability problem, namely the system
inputs and outputs, whereas the invariants of interest are
unknown for the accessibility problem, namelyIV .

For the subsequent analysis, locally both mapsO|Vγ0
×Vη

andAT |Vγ0
×Vη

(with Vγ0
×Vη ⊂ Γ (D,X )×Γ[0,T ] (∂D,U)

and(γ0, η) ∈ Vγ0
×Vη) are supposed to be of classC1 and

that the linearized mapsDO andDAT of the systemΣ are
equivalent to the maps of the linearized system.

IV. A CCESSIBILITY AND OBSERVABILITY

Next, we pursue the ideas of Section III and apply the
theory of symmetry groups (Lie groups of transformation),
because variations of solutions(γ, η) are identified by1-
parameter symmetry groups, which generate a flow onX , U ,
respectively, and allow to transform solutions into solutions.
To formulate the above considerations in the context of
symmetry groups and to derive criteria for both properties,
again we suppose to have a solution(γ, η) of the system
Σ, and consider the set of local (pointwise) transformation
groups9

Φε = (ΦX
ε ,ΦU

ε ) : [0, T ] → G (X ) × G (U) (9)

8The notationΓ[0,T ] (N ,M) denotes a set of functions[0, T ] →

Γ (N ,M).
9G (M) denotes1-parameter transformation groups on a manifoldM.
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with
ΦX

ε (t) = ΦX
t,ε : X → X

ΦU
ε (t) = ΦU

t,ε : U → U
(10)

and the group parameterε ∈ R. The groups are supposed
not to operate onX i such thatΦt,ε fulfills

(X i, γ̄α(t)
(
X i

)
) = ΦX

t,ε

(
X i, γα(t)(X i)

)

(X i, η̄κ(t)(X i)) = ΦU
t,ε

(
X i, ηκ(t)(X i)

)
,

(11)

wherewith we have variations of the form (3) for fixed group
parameterε 6= 0. To ensure thatΦε transform solutions into
solutions of the systemΣ, the conditions

∂

∂t
γβ
ε (t)(X) = fβ ◦ j1(γε)(t)(X)

0 = gν ◦ (γε, ηε) (t)(X∂)

(12)

must be satisfied with

γε(t) = ΦX
t,ε ◦ γ (t)

ηε(t) = ΦU
t,ε ◦ η (t) .

(13)

Remark 4 Following the ideas of Remark 2, if there is at
least one groupΦε, where the input and the output remain
invariant,

η(t)(X∂) = ηε(t)(X∂),

h ◦ (γ, η) (t)(X∂) = h ◦ (γε, ηε) (t)(X∂)
(14)

the systemΣ is non-observable because the initial conditions
γ(0) 6= γε(0), ε 6= 0 cannot be distinguished by means of
the system output. On the contrary, if there is at least one
invariant

∫

D

It ◦ γ(t)(X)dX =

∫

D

It ◦ γε(t)(X)dX (15)

for any groupΦε, the systemΣ is non-accessible because
there is no neighborhoodVγT

of γT where any end condition
γ̄T ∈ VγT

is reachable.

The derivation of (local) criteria mainly relies on the fact that
we can use the infinitesimal generators of the transformation
groupsΦt,ε,

vX (t) = vX ,t =

(
∂

∂ε
ΦX ,α

t,ε

)∣
∣
∣
∣
ε=0

= ∂αv
α
X ,t∂α

vU (t) = vU ,t =

(
∂

∂ε
ΦU ,κ

t,ε

)∣
∣
∣
∣
ε=0

∂κ = vκU ,t∂κ,

(16)

which are (vertical) vector fieldsvX ,t = vαX ,t∂α : X →
V (X ), vU ,t = vκU ,t∂κ : U → V (U) on the manifolds
X , U , respectively. For a systemΣ we also require the
group actions on the jet manifoldJ1 (X ). Hence, instead
of prolonging the group actions,

j1
(
ΦX

t,ε

)
=

(

ΦX ,i
t,ε ,Φ

X ,α
t,ε , dj

(

ΦX ,α
t,ε

))

: J1 (X ) → J1 (X ) ,

(17)

we prolong their infinitesimal generators,10

j1 (vX ,t) = vαX ,t∂α + dj
(
vαX ,t

)
∂j
α : J1 (X ) → T

(
J1 (X )

)
.

(18)
In addition, the group actions and the corresponding in-
finitesimal generators with respect toι∗ (X ) can easily be
obtained by restricting the group actions and the infinitesimal
generators, respectively.

Then, we have thatΦt,ε are symmetry groups iff the
infinitesimal criterion of invariance

∂

∂ε

(
∂

∂t
γβ
ε (t)(X)

)∣
∣
∣
∣
ε=0

=
∂

∂ε

(
fβ ◦ j1(γε)(t)(X)

)
∣
∣
∣
∣
ε=0

(19a)
and

0 =
∂

∂ε
(gν ◦ (γε, ηε) (t)(X∂))

∣
∣
∣
∣
ε=0

(19b)

resp.11

v̇βX ,t = j1 (vX )
(
fβ

)

= vαX ,t∂αf
β + dj

(
vαX ,t

)
∂j
αf

β (20a)

and
0 = vX ,t (g

ν) + vU ,t (g
ν)

= vαX ,t∂αg
ν + vκU ,t∂κg

ν .
(20b)

is satisfied. Thus, we have conditions on the coefficientsvαX .t,
vκU ,t of the vertical vector fields.

According to (4) for the observability there are the addi-
tional conditions

∂

∂ε
(η(t)(X∂))

∣
∣
∣
∣
ε=0

=
∂

∂ε
(ηε(t)(X∂))

∣
∣
∣
∣
ε=0

∂

∂ε
(h ◦ (γ, η) (t)(X∂))

∣
∣
∣
∣
ε=0

=

∂

∂ε
(h ◦ (γε, ηε) (t)(X∂))

∣
∣
∣
∣
ε=0

(21)

resp.
0 = vκU ,t ,

0 = vX ,t

(
hζ

)
+ vU ,t

(
hζ

)
,

= vαX ,t∂αh
ζ + vκU ,t∂κh

ζ

(22)

Apparently, for the observability problem we have a vector
field vU ,t = vκU ,t∂κ = 0.

Remark 5 By means of the output equations we have in-
duced group actions onY defined by

ΦY
ε = h ◦ (γε, ηε) : [0, T ] → G (Y) (23)

10The prolongation simplifies because of vertical vector fields, see, e.g.,
[11, p. 124ff].

11Actually, we should writeι∗
(

vX ,t (g
ν)
)

+ ι∗
(

vU,t (g
ν)
)

, hence, the
pull-back is neglected since it should be clear from the context.
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with ΦY
t,ε = ΦY

ε (t) : Y → Y. Using the infinitesimal
generators

vY (t) = vY,t =

(
∂

∂ε
ΦY,ζ

t,ε

)∣
∣
∣
∣
ε=0

∂ζ = vζY,t∂ζ (24)

andvU ,t = 0 for the observability problem the case

vζY,t = vX ,t

(
hζ

)
= vαX ,t∂αh

ζ = 0 (25)

is considered.

With these insights at our disposal, we are able state a non-
observability criterion.

Theorem 1 If locally the conditions (20) and (22) allow a
non-trivial vector field0 6= vX ,t : X → V (X ) along the
trajectory (γ, η), the systemΣ is locally non-observable.

Proof: A non-trivial vector field vX ,t together with
vU ,t = 0 induces a1-parameter symmetry groupΦt,ε, which
allows to derive another solution(γ̄, η) of the systemΣ, hav-
ing the same input and the same output. Hence, the different
initial conditionsγ (0) 6= γ̄ (0) are indistinguishable.

Remark 6 It is worth noting that the approach can also
be extended straightforward to investigate different types of
system outputs. Moreover, if the observability conditions
are evaluated along the trajectory, they coincide with the
linearized systemΣ∆ (along the trajectory)

∆ẋβ =
(
∂αf

β ◦ j1 (γ) (t) (X)
)
∆xα

+
(
∂j
αf

β ◦ j1 (γ) (t) (X)
)
∆xα

j

(26a)

with boundary conditions

(∂αg
ν ◦ (γ, η))∆xα + (∂κg

ν ◦ (γ, η))∆uκ = 0 (26b)

and outputs

∆yζ =
(
∂αh

ζ ◦ (γ, η)
)
∆xα+

(
∂κh

ζ ◦ (γ, η)
)
∆uκ , (26c)

by identifying vαX ,t, v
κ
U ,t, v

ζ
Y,t with ∆xα, ∆uκ, ∆yζ , re-

spectively, where the inputs and the outputs have to vanish
for the considered time interval[0, T ].

For the accessibility problem we are interested in (local)
invariants of the symmetry groupsΦε of the form

I (γε(t)) =

∫

D

(It ◦ γε(t)(X)) dX (27)

satisfying
I (γε(t)) = const.

or

∂

∂ε
I (γε(t))

∣
∣
∣
∣
ε=0

=
∂

∂ε
I
(
ΦX

t,ε (γ(t))
)
∣
∣
∣
∣
ε=0

=

∫

D

γ(t)∗ (vX ,t (ItdX))

= 0

(28)

if vX ,t is an admissible vector field. By using the relation
vX ,t (ItdX) = d (vX ,t⌋ (ItdX))+vX ,t⌋d (ItdX) and Stokes’

Theorem, see, e.g., [16], one can write the functional (28)
in the form

∫

D

γ(t)∗ (vX ,t⌋dIt ∧ dX)

︸ ︷︷ ︸

=I1(γ(t))=0

+

∫

∂D

ι∗ (γ(t)∗ (vX ,t⌋ (ItdX)))

︸ ︷︷ ︸

=I2(γ(t))=0

= 0

(29)

with the embeddingι : ∂D → D and wheredIt :
X → T ∗ (X ) is the differential of It. The functional
I2 (γ(t)) vanishes sincevX ,t⌋ (ItdX) = 0. Because of
I1 (γ(t)) = 0 we have

I1 (γ(t)) =

∫

D

γ(t)∗
(
vαX ,tω

X
t,αdX

)
= 0 (30)

with

ωt = dIt = (∂iIt) dX
i + (∂αIt) dx

α

= ωX
t,idX

i + ωX
t,αdx

α

andωX
t,i = ωX

i (t), ωX
t,α = ωX

α (t).
To incorporate the information thatvX ,t is the generator

of a symmetry group we differentiate (30) with respect to
the evolution parametert,

∂

∂t

∫

D

γ(t)∗
(
vαX ,tω

X
t,αdX

)

=

∫

D

γ(t)∗
((
v̇αX ,tω

X
t,α + vαX ,tω̇

X
t,α

)
dX

)
= 0 ,

(31)

and use the infinitesimal criterion for invariance to substitute
for v̇αX ,t,

∫

D

γ(t)∗
(

v̇βX ,tω
X
t,βdXD

)

=

=

∫

D

j1(γ(t))∗
((

vαX ,t∂αf
β + dj(v

α
X ,t)∂

j
αf

β
)
ωX
t,βdX

)

.

(32)
For PDE systems the latter functional is not appropriate in its
actual form because it depends on the derivativesdj

(
vαX ,t

)
of

components of the vector fieldvX ,t, and, thus, can contribute
to the so far vanishing boundary integralI2 (γ(t)). This is
a well known problem in the calculus of variations, which
alternatively could be solved by using Lepagian forms, see,
e.g., [9]. In order to obtain a form depending only on
the components of the vector fieldvX ,t, but not on their
derivatives, we apply the identity

∫

D

j1(γ(t))∗
(

dj(v
α
X ,t)∂

j
αf

βωX
t,βdX

)

=

= −

∫

D

j1(γ(t))∗
(

vαX ,tdj

(

∂j
αf

βωX
t,β

)

dX
)

+

∫

∂D

(γ(t) ◦ ι)∗
(

vX ,t⌋ω̄
j
t ∧ ∂j⌋dX

)

(33)
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with ω̄j
t = ∂j

αf
βωX

t,βdx
α, where Stokes’ Theorem is used.

We get the following terms on the domain
∫

D

j1(γ(t))∗
((

ω̇X
t,β + ωX

t,α∂βf
α
)

vβX ,tdX
)

−

∫

D

j1(γ(t))∗
(

dj

(

∂j
βf

αωX
t,α

)

vβX ,tdX
) (34)

and on the boundary
∫

∂D

(γ(t) ◦ ι)∗
(

∂j
βf

αωX
t,αv

β
X ,t∂j⌋dX

)

= 0 . (35)

The equations (34) must now hold along a given trajectory
(γ, η) and independently from the choice ofvX ,t since
there are no further restrictions on the domain. Thus, for
equations (34) to hold we require that the corresponding
braced term vanishes along a trajectory(γ, η) and so the
following conditions for an invariant can be extracted,

vβX ,t : ω̇X
t,β = −ωX

t,α∂βf
α + dj

(

∂j
βf

αωX
t,α

)

. (36)

In order to obtain the boundary conditions for an invariant,
we pay attention to the vector field restrictions (20) on the
boundary. Considering all non-trivial terms

∂αg
νvαX ,t = −∂κg

νvκU ,t , (37)

we have to successively substitute corresponding terms in
(35) to incorporate all present boundary conditions of the
vector field. Following this procedure, this may require some
distinctions of cases on (parts of) the boundary, hence, by
considering the special coordinate system we finally get
boundary conditions of the form

vκU ,t : 0 = pακω
X
t,α (38a)

vβX ,t : 0 = p̄αβω
X
t,α (38b)

with suitable functionspακ , p̄
α
β ∈ C∞

(
ι∗
(
J1 (X )

)
×∂D U

)
.

Theorem 2 If locally the conditions (36) and (38) together
with the conditiondω̃t ∧ dX = 0, ω̃t = ωX

t,αdx
α allow

a non-trivial solution leading to an invariantI (γ(t)) =
∫

D
(It ◦ γ(t)(X)) dX with ∂αIt(X, x) = ωX

t,α(X, x) 6= 0,
the system is (locally) non-accessible.

Proof: If we assume a non-trivial solutionωX
t,α, then

due to the Frobenius Integrability theorem, see, e.g., [16],
and dω̃t ∧ dX = 0 we have a (local) solutionIt for the
PDEsωX

t,α(X, x) = ∂αIt(X, x), depending onxα, and a (lo-
cal) non-trivial functionalI (γ(t)) =

∫

D
(It ◦ γ(t)(X)) dX.

Then, we can select a point̃γT in the arbitrarily small
neighborhoodVγT

of γT , which fulfills I (γ̃T ) 6= I (γT )
and, obviously, the mappingAT,γ0

is locally not onto since
there is no inputη steering the system to the pointγ̃T . I.e.,
any neighborhoodVγT

of γT will not be open and so the
system is non-accessible.

Remark 7 If the accessibility conditions are evaluated along
the trajectory, they coincide with the adjoint system of
the linearized systemΣ∆, see, e.g., [19], by identifying

ωX
t,α, ω

U
t,ζ, ω

Y
t,κ with ∆xα, ∆uζ , ∆yκ, respectively, where

the (adjoint) inputs∆uζ and the (adjoint) outputs∆yκ (with
ωY
κ = pακω

X
α ) have to vanish for the considered time interval

[0, T ].

In summary, necessary criteria in form of (homogeneous)
linear PDE systems are obtained, where a non-trivial solution
implies a non-trivial transformation group / invariant and
non-observability / non-accessibility, respectively. In addi-
tion, sufficient conditions are provided in form of a priori
inequalities, which can be seen as the integral version of the
previous conditions.

Theorem 3 The systemΣ is locally observable along a
trajectory (γ, η), if the following inequality is satisfied,

∥
∥
∥

(

vζY

)

(γ (·))
∥
∥
∥
FY

≥ c
∥
∥
(
vαX ,0

)
(γ0 (·))

∥
∥
FD

(39)

with vζY = vX
(
hζ

)
and c ∈ R

+, wherevαX ,t solves (20).

Proof: The proof relies on the Local Injectivity Theo-
rem, see, e.g., [21, Theorem 2.5.10, p. 123] and the fact that
the systemΣ∆ is the generator ofDOη (γ0). Because of
the Closed Range Theorem and the inequality (39) the range
R (DOη (γ0)) of the derivativeDOη (γ0) at γ0 is closed,
see, e.g., [22]. Thus, there is a neighborhoodUγ0

of γ0,
Uγ0

⊂ Vγ0
, on whichOη is injective, and the systemΣ is

observable along this trajectory.

Theorem 4 The systemΣ is locally accessible along a
trajectory (γ, η), if the following inequality is satisfied,
∥
∥
(
ωY
κ

) (
j1 (γ) (·)

)∥
∥
F∗

U

≥ c
∥
∥
(
ωX
α,0

) (
j1 (γ0) (·)

)∥
∥
F∗

D

(40)

with ωY
κ = pακω

X
α and c ∈ R

+, whereωX
t,α solves (36) and

(38b).

Proof: The proof relies on the Local Surjectivity
Theorem, see, e.g., [21, Theorem 2.5.9, p. 122] and the fact
that the systemΣ∆ is a generator ofDAT,γ0

(η). Because
of the inequality (40) the adjoint operatorDA∗

T,γ0
(η) of

DAT,γ0
(η) atη is one-to-one and has closed range, see, e.g.,

[22]. Due to the Closed Range Theorem the mapDAT,γ0
(η)

is onto atη, and, thus, there are open neighborhoodsUη and
UγT

such thatAT,γ0
|
Uη

→ UγT
is onto, and the systemΣ

is accessible along this trajectory.
It is worth mentioning that, for instance, [3], [8] contain

equivalent criteria for linear PDE systems..

V. NONLINEAR EXAMPLES

Next, nonlinear examples are studied to illustrate the
theory and results. Let us consider the nonlinear example

ẋ1 = x2

ẋ2 = x4
1x

3 − x3
1

ẋ3 =
(
1 + x4

)
x2
1

ẋ4 = 0

(41a)

K. Rieger and K. Schlacher • Accessibility and Observability for a Class of First-Order PDE Systems with Boundary Control and Observation 

1762



on D = [0, 1] for x4 > 0 with the boundary terms

0 = x3 + u1 , y1 = x1 , y2 = x2 (41b)

on ∂D.

Proposition 1 The system (41) is locally non-observable
along the trajectory(γ, η) with (γα) (t) (X) = (0, 0, 0, 1),
ηκ (t) (X) = 0 and anyT > 0.

Proof: According to Theorem 1 the observability
conditions follow to

v̇1X ,t = v2X ,t

v̇2X ,t = x3d1
(
v4X ,t

)
+ x4

1v
3
X ,t − d1

(
v3X ,t

)

v̇3X ,t = x2
1v

4
X ,t +

(
1 + x4

)
d1

(
v2X ,t

)

v̇4X ,t = 0

(42)

on D and

0 = v1X ,t , 0 = v2X ,t , 0 = v3X ,t , 0 = v1U ,t (43)

on∂D. There is a vector fieldvX ,t = ∂4 with v1X ,t = v2X ,t =
v3X ,t = 0 solving the equations along the trajectory such that
the system (41) is non-observable.vX ,t is the generator of a
symmetry group withγε = ΦX

t,ε (γ) =
(
γ1, γ2, γ3, γ4 + ε

)
.

Hence, all solutions(γε, η) with different initial conditions
lead to the same outputsy1 = γ1

ε (t) (X∂) = 0, y2 =
γ2
ε (t) (X∂) = 0.

Next, let us consider the nonlinear example, see, e.g., [19],

ẋ1 =
(x1x2 − x1)x2

1 + x1
1x

2

x2
,

ẋ2 = −x2x2
1

(44a)

with D = [0, 1] for x2 > 0 and the boundary conditions

0 = x1 + u1 , 0 = x2 + u1 (44b)

on ∂D1 = {0} ⊂ ∂D for u1 > 0.

Proposition 2 The system (44) is locally non-accessible
along any trajectory for anyT > 0.

Proof: The infinitesimal principle of invariance delivers
the conditions

v̇1X ,t = −
(x2 − 1)x2

1

x2
v1X ,t −

x1x2
1

(x2)2
v2X ,t

−d1(v
1
X ,t)−

x1x2 − x1

x2
d1(v

2
X ,t) ,

v̇2X ,t = −x2
1v

2
X ,t − x2d1(v

2
X ,t)

(45)

on the domainD and

0 = v1X ,t + v1U ,t , 0 = v2X ,t + v1U ,t (46)

on the boundary∂D1. According to Theorem 2 the (local)
accessibility conditions follow as

v1X ,t : ω̇X
t,1 =

(x2 − 1)x2
1

x2
ωX
t,1 − d1(ω

X
t,1) ,

v2X ,t : ω̇X
t,2 =

x1x2
1

(x2)2
ωX
t,1 + x2

1ω
X
t,2

−d1

(
x1x2 − x1

x2
ωX
t,1

)

− d1
(
x2ωX

t,2

)

(47)

on D and

v1U ,t : 0 =

(

−1−
x1x2 − x1

x2

)

ωX
t,1 − x2ωX

t,2 (48)

on ∂D1 and

v1X ,t : 0 = ωX
t,1 , v2X ,t : 0 = ωX

t,2 (49)

on ∂D2 = {1}. A non-trivial solution is given by

ωX
1,t =

φb(t−X − (T − 1 + b))

x2
,

ωX
2,t = −

φb(t−X − (T − 1 + b))x1

(x2)
2 ,

(50)

which fulfills d
(
ωX
1,tdx

1 + ωX
2,tdx

2
)
∧ dX = 0 and leads to

the invariant

It(X, x) = −φb(t−X − (T − 1 + b))
x2 − x1

x2
(51)

with

φb(a) =

{

e
b2

a2−b2 |a| < b

0 |a| > b

and b ∈ R
+ for any T > 0 such that the system (44) is

non-accessible along any trajectory for anyT > 0.
Finally, let us consider the nonlinear example, see, e.g., [23],

ẋ1 = x3

ẋ2 = x3
1

ẋ3 = α2
1 (X, x) x2

1 + α2 (X, x)

(52a)

with α1, α2 ∈ C∞ (X ) andα1 (X, x) > 0, α2 (X, 0) = 0
on D = [0, L], L ∈ R

+ with the boundary terms

0 = x2 + u1 , y1 = x1 (52b)

on ∂D. Let FD = C2 [0, L], Ft = C2 [0, L] × [0, T ],
FY = C1 [0, T ], see, e.g., [23] for a discussion of the
well-posedness of solutions, then we have the following
observability result.

Proposition 3 The system (52) is locally observable along
a trajectory(γ, η) with T > L/inf0≤X1≤L α1.

Proof: According to Theorem 1 the observability
conditions follow to

v̇1X ,t = v3X ,t

v̇2X ,t = d1
(
v3X ,t

)

v̇3X ,t = 2x2
1

(
∂1α1v

1
X ,t + ∂2α1v

2
X ,t + ∂3α1v

3
X ,t

)

+∂1α2v
1
X ,t + ∂2α2v

2
X ,t + ∂3α2v

3
X ,t

+α2
1d1

(
v2X ,t

)

(53)
on D and

0 = v1X ,t , 0 = v2X ,t , 0 = v1U ,t (54)

on ∂D. Using the result of [23] the inequality
∥
∥
(
v1X

)
(γ (·))

∥
∥
FY

≥ c
∥
∥
(
vαX ,0

)
(γ0 (·))

∥
∥
FD

,

is satisfied, wherec depends onT , and because of Theorem
3 the system (52) is observable along such a trajectory.
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VI. CONCLUSIONS

In this article first an intrinsic formulation for a class
of first-order PDE systems with boundary conditions and
boundary interaction was provided by using differential
geometrical methods. Then, a group-theoretical approach
was proposed to tackle both the problem of accessibility
and observability along a fixed trajectory and we illustrated
that (local) observability and accessibility criteria could be
provided by using an infinitesimal principle of invariance. In
particular, group invariants were studied, which are known
for the observability problem and unknown for the acces-
sibility problem. It is worth mentioning that due to the
underlying geometric structures the methods can be extended
straightforward to higher-order (and coupled) PDE systems
with various boundary conditions.
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APPENDIX

Let E and M be smooth manifolds, then a bundle is a
triple (E , π,M) with the total manifoldE , the base manifold
M and the projection (or fibration)π : E → M, where
π−1(p) for any p ∈ M denotes the fiber overp. If there
is no danger for confusion, a bundle is denotedπ : E →
M or simply E → M for short. The manifoldM has the
coordinates

(
Zi

)
and E the adapted coordinates(Zi, zα).

Zi, i = 1, . . . ,m are the independent coordinates andzα,
α = 1, . . . , n the dependent coordinates. A sectionσ of the
bundleE → M is a mapσ : M → E ; (Zi) 7→ (Zi, σα(Zi))
such thatπ ◦ σ = idM with the identity mapidM on M.
The set of sectionsσ : M → E is denotedΓ(M, E).

The tangent and cotangent bundle of a smoothn-
dimensional manifoldN (with coordinatesX i) are denoted
by T (N ) → N and T ∗(N ) → N , which are equipped
with the induced coordinates(X i, Ẋ i) and (X i, Ẋi) with
respect to the holonomic bases{∂i} and

{
dX i

}
. The exterior

algebra over ann-dimensional manifoldN is denoted by
∧(T ∗(N )) with the exterior derivatived : ∧k(T ∗(N )) →
∧k+1(T ∗(N )), the interior product⌋ : ∧k+1(T ∗(N )) →
∧k(T ∗(N )) written as v⌋ω with v : N → T (N ) and
ω : N → ∧k+1(T ∗(N )), and the exterior product∧. Further,
∧k(T ∗(N )) → N is the exteriork-form bundle onN . The
Lie derivative ofω : N → ∧(T ∗(N )) along a vector field
f : N → T (N ) is identified byf(ω).

Let s1p(σ) denote the equivalence of all sectionsσ̄ ∈
Γ(M, E) at p ∈ M such thatσα(p) = σ̄α(p) as well
as ∂jσ

α(p) = ∂j σ̄
α(p) with ∂j = ∂

∂Xj . Then, the set of
equivalence classs1p(σ) can be endowed with the structure
of a manifoldJ1(E) = {s1p(σ) : p ∈ M, σ ∈ Γ(M, E)},
which is called the first jet manifold and has the adapted
coordinates(Zi, zα, zαj ). According to the previous con-
struction we have the bundlesπ1

0 : J1(E) → E and
π1 : J1(E) → M). Then a sectionσ ∈ Γ(M, E)
can be extended to a sectionj1(σ) ∈ Γ(M, J1(E)) with
j1(σ)(Z) = (Zi, σα(Z), ∂jσ

α(Zi)), which is called the
first jet of σ. The operatordj : J1(E) → π1,∗

0 (T (E)) is
called the total derivative with respect to the independent
coordinateZj , which fulfills (djf)◦j1(σ)(Z) = ∂jf(σ) (Z)
for anyf ∈ C∞(E) andσ : M → E . In adapted coordinates
(Zi, zα, zαj ) it is defined bydj = ∂j + zαj ∂α, ∂j

α = ∂
∂zα

j

.
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