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Accessibility and observability for a class of first-order PDE systems
with boundary control and observation

Karl Rieger and Kurt Schlacher

Abstract— A group-theoretical approach is used to tackle geometric methods have emerged as a useful tool to study

both the problem of local accessibility and observability along a PDE systems, see, e.g., [9], [10], [11], [12] and references
trajectory for a class of first-order PDE systems with boundary therein, where all results rely on an intrinsic formulation

control and observation. Based on an intrinsic formulation fd . ¢ H v i tant t
including boundary terms (local) criteria are derived in form of dynamic systems. However, mostly important aspects are

of equivalence problems, where existence and/or non-existence Missing, for instance, boundary conditions, boundary system
of (pointwise) transformation groups and their invariants is  inputs and outputs. In this contribution we first present a

related to (non-)observability and/or (non-)accessibility of PDE  coordinate-independent formulation for a class of first-order
systems, respectively. Examples demonstrate the theory and PDE systems including boundary terms, namely we associate

results. . . .
Index Terms— differential geometry, infinite-dimensional sys- the sy;tem (equations) V_V_'th a so-called Qe”era'!zed Ve(,:tor
tems, nonlinear systems, accessibility, observability. field with bOUndary conditions, or alternatlvely, with a pair
of submanifolds, containing all possible solutions of the
I. INTRODUCTION system. Then, in the main part of the work we discuss

Control systems described by partial differential equation#e observability and the accessibility along a trajectory in
or PDE systems for short, can arise in several differerg:eneraL It is shown that based upon the intrinsic picture of
disciplines if certain phenomena are modeled, for instand@DE systems observability and accessibility criteria can be
transportation delays, spatially-distributed parameters asgrived in the same manner by using a so-called infinitesimal
the like. Examples can be found in various fields suchriterion for invariance. It is worth mentioning that neither a
as continuum mechanics, thermodynamics, economics af¥stematic method for checking the criteria nor the topic of
finance. A system-theoretical analysis of PDE systems @ptimal sensor and actuator placement are addressed within
much more involved in Comparison to systems described HDIS contribution. With respect to previous publications, see,
ordinary differential equations, or ODE systems for shor€-9., [13], [14], [15] we provide additional results for PDE
because new effects appear which are unknown in the finitdystems, especially, with boundary control and observation.
dimensional case, see, e.g., [1], [2], [3], [4]. In this article wdt is worth mentioning that the formulation and the analysis
propose an approach by means of transformation groups ad@Proach can be adopted to consider (coupled, higher-order)
their invariants to tackle both the problem of observabiliy?DE systems with various boundary conditions as well.
and accessibility along a trajectory. The basic questions for The article is organized as follows. In Section II the in-
the problems are different in principle, because invariantginsic formulation for dynamic systems under consideration
of groups are either known or unknown, but both casd§ introduced. In Section Il observability and accessibil-
can be treated with the same mathematical tool. In previoily are discussed and an approach is motivated by using
publications, see, e.g., [5], [6], [7] and references thereiiifansformation groups. Based on the geometric picture of
a similar approach was successfully applied to dynamiystems in Section IV it is outlined how (local) criteria for
systems, whose evolution along continuous or discrete tif{Bon-)observability and (non-)accessibility along a trajectory
is governed by nonlinear (explicit and implicit) ordinarycan be derived by studying group invariants and utilizing an
differential equations or difference equations. Especially, wifinitesimal criterion for invariance. To illustrate the theory
highlight that the concepts and ideas can also be transferre@nlinear examples are arranged in Section V. Finally, the
to PDE systems, and observability/accessibility criteria cagPntribution finishes with some conclusions. The utilized no-
be derived in a successive manner. Of course, the checktafion and relevant mathematical preliminaries are introduced
these criteria becomes much more comprehensive in contr#dien necessary and/or can be found in the appendix. In the
to ODE systems. contribution we particularly apply well-known concepts from

In the literature observability and accessibility are wellthe field of differential geometry, where the interested reader
studied for particular (nonlinear) PDE systems, see, e.g., [1} referred to, e.g., [9], [11], [16] for an introduction and
[2], [3], [8], [4] and references therein, just to name a fewmuch more details.

To the knowledge of the authors there are not many results
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Unlike for ODE systems a success of the group approach feuch thaty(t) : D — X, n(t) : 9D — U are sections of
PDE systems depends here on a considerable extent to the bundles¥ — D, U/ — 9D at time instance € [0, 7],

accompanying boundary conditions respectively, and the equations
¢’ (X4 z% u) =0, v=1,...,b (1b) 0 )
( : 2op@x) = e m)B)

and boundary output functions

yS = hS (X 2%, u"), C=1,...,1. (1c) 0 = g"o(y,nt)(Xa),

_ _ _ are satisfied with the initial conditiop(0) and the inpuf(¢).
Here,X = (X%), i =1,...,q are the (spatial) coordinates onTpe output follows to
the domainD, which is supposed to be a compact manifold
with global volume form and coherently orientable boundary y© =9 (t) (Xa) = h¢ o (7,m)(t)(Xa)
OD. Moreover, we assume thaly = (X'),i =1.....a=L1 jith g = po (4,5) : [0,T] — T (9D, ) such thatd (¢) €
are the (spatial) coordinates @iD. Basically, the bundles I (9D,) is a section of the bund@ — 9D
A =D, U — ID, 3} — 0D are applied with mdeperldent For the analysis we suppose that solutions of the sy&tem
coordinatesy = (X ) and dependent coordinates= (z), are well-posed in the sense of Hadamard, see, e.g., [17], i.e.,

a=1..nu=(u) & =1.,mandy = (¥°):  there are appropriate function spaces for trajectdri€g
respectively. In this setting the timeis considered as an ([0,T], Fp), for inputs (u*) € Fy and for outputs

_evolution parameter anq n_ot as a coordipate. In ado_litio_n, tr(% ° (%77)) € Fy, where Fp denotes a function space
jet bu_ndleJl(X) — X is m_troduced to |_nclude derlva_ltlve for functions defined on the domai® and F, ([0, T, Fp)
coordinatesc§’, j = 1,...,q in the formalism. To consider (- e eyolution in time. In addition, we suppose a locally
boundary terms the restricted bundle*(X) — 0D is  goyaple system, ie., there are no hidden equations leading

utilized with an embedding : 9D — D, see, e.g., [11, (g the definition of a smaller submanifoh C Sp.
Definition 1.4.8], where a section € T'(D, X) implies a

sectionyp = yo 1 € T'(dD,* (X)), which is also denoted Il1. DEFINITIONS, MOTIVATION AND TRANSFORMATION
~ for short. GROUPS

In order to avoid any mathematical irregularities from now For the sake of completeness let us recall well-known
on all manifolds are smooth manifolds and the functigfis ~ definitions of observability and accessibility along a fixed
g, h¢ depend smoothly on their argumehtsf the latter trajectory for PDE systems. For ODE systems it is well
assumptions do not hold, the presented methods do not loaggwn that in general both properties depend on the system
their validity; hence often many distinction of cases can bgajectory, see, e.g., [18], [7], and, thus, for PDE systems
avoided. For brevity and readability, the Einstein summatioe associate the observability property and the accessibility
convention is utilized throughout the article and the ranggsroperty with a fixed trajectory. In particular, it is assumed
of the indices as well as the arguments of functions are ngiat there exists a solutibr(~,7) of the system® on the
always stated explicitly if they are clear from the context. time interval[0, 7] with initial condition~ (0) = v, and end

The intrinsic formulation of the systerx is obtained conditiony (T) = 7.
by the assumption that the equations (1a) define (locally) Let us first introduce the following definitions.

a generalized vector fieldJ! (X) — =" (V (X)) or,

alternatively, a submanifolé c w5 (V (X)) with f® €  Definition 1 An initial condition 7, is said to beindistin-

C® (J* (X)), and the equations (1a), (1b) (locally) a fibredguishable along the trajectofy;, 1), written v, ~ 7o, if for

(regular) submanifoldSy C *(X) xap U with g” € all ¢t € [0,7] the same outpuk o (v,7) (t) = ho (7,7) (t)

C* (1*(X) xap U). In addition, we suppose that locally the (for the same input) follows.

output equations (1c) define a fibred (regular) submanifold

N C*(X) xgp U xop Y With h¢ € C (.*(X) xgpU).  Definition 2 An end conditiony; is said to bereachable
along the trajectory{v,n), written vp ~ 77, if there is an

Remark 1 The formalism includes boundary conditionsinput to steer the systerfi from v, to 57, i.e., there is a

and, thus, leads to the definition of a pair of submanifoldsolution (7, 7) with 7 (0) = v and ¥ (T) = 7.

(8,S8s) in comparison to, e.g., [9], [10], where no boundary
conditions are considered. By means of the previous definitions we able to define the

properties observability and accessibility along a trajectory.
A solution of the systenX: on the time interval0, 7] C R
is given by maps Definition 3 (Observability along a trajectory) A system
. Y is said to be (locally)observable along the trajectory
,n) :[0,T] = I'(D,X) x I'(0D, U 2 ! ) ,
(vym) = [0, 7] = T ) > I( ) @ (v,m), if there is an open neighborhoad,, of v, such that

INote the abuse of notation since we also wi@ when the boundary for every open neighborhoofd% of ~, contained in V%
conditions are only defined on a part @D.

2Solutions do not have to be smooth. 40therwise we have to study a two-point boundary problem for (nonlin-
3The concept of a pull-back bundle is applied here, see, e.g., [1&ar) system&, which might not have a solution at all, to determine whether
Definition 1.4.5], whereof a restricted bundle is a special case. all subsequent investigations are reasonable or not.
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and 7o € U, with 59 ~ 7o implies 7y, = o, otherwise the problem, respectively, which are definecfby
system is said to be (locallyjon-observable
ystem s sal (locallyjo v O: T(D,X) xTiq (dD,U) — Tz (0D, V) ;

Definition 4 (Accessibility along a trajectory) A system (70,m) > ho(y,n)

>} is said to be (locally)accessible along the trajectory ()

(7, n), if there is an open neighborhodd,, of v such that and

for every open neighborhodd,, of vy contained inV,, Ar: T(D,X) x T (0D,U) — T(D,X);

andyr € U,, it follows v ~ 57, otherwise the system is (8)
(70, 1) > VT

said to be (locally)non-accessible
] . o ) where (v,7) solves the systen®. The map O relates
According to the previous definitions both properties argye injtial condition and the input to the associated out-
defined locally with respect to a fixed trajectory and SerVBut, whereas the mapdr relates the initial condition
as the basis for our subsequent investigations. Hence, itd8q the input to the associated end condition at time
worth noting that also different (stronger and weaker) notiongstance 7. The local observability problem is equiva-
of observability and accessibility along a trajectory can bgnt to the local injectivity of0, = O(.n) : V,, C
used, see, e.g., [13], [19]. o . I'(D,X) - T'(D,X) and in case of non-observability the
In [20] the concept of so-called similarity transformations;g; of indistinguishable initial conditions readss,, =
is used to study_properties of (nonlinear) ODE systems. Her{a% €V, : O, (10) =0, (70)}. The local accessibility
we follow a similar approach for PDE systems. problem is equivalent to the local surjectivity ofr ., =
Ar (70,-) : Vy CT o, (0D,U) — T (D, &) and in case of
Remark 2 Let (v,n) be a solution of the syster on non-accessibility the set of reachable end conditions reads

the time interval0, 7] and consider all possible (pointwise) RS, = {3y € V., : 37 €V, Ar, (7) =Fr} and we
variations of the form may look for invariantsZV C C* (X) describingRS,,.
(X6, 72()(X1) = ox (t, X 'yo‘(t)(Xi)) The key idea is now to parametrize the sef,, andRS,,

_ _ _ _ (3) via 1-parameter (pointwise) Lie groups of transformation

(X5 75 (0(X) = u (t, X7 (t)(X7). fulfilling the properties of admissible variations (3) for each

such that the distorted solutiafy, 77) is another solution of 9rOUP parameter and to consider group invariants of interest.
the systen®.. If there is one variation (3) such that the input

and the output remain invariant, Remark 3 The approach for tackling both problems is sim-
ilar, hence, the basic questions are different in principle.
n(t) (Xa) = n(t)(Xo) Besides the system equations all invariants of the groups
ho(v,n)(t)(Xs) = ho(3,7)(t)(Xs) , ) are known for the observability problem, namely the system

_ o ‘inputs and outputs, whereas the invariants of interest are
the systemX is non-observable because the initial condiynknown for the accessibility problem, namély.

tions® v (0) = o, 7 (0) = 7o are indistinguishable along the
trajectory (v, 7). If there is an invariartof the form For the subsequent analysis, locally both mapg, .,
- and Arly, ., (With V,, xV, CT(D,X)x L7 (0D, U)
L(v(#®) = Loy (t)(X) =T o7(t) (X) ©)  and (Y0,7m) € Vy, X V,) are supposed to be of claés and
or that the linearized mapP© and D A1 of the systen are

equivalent to the maps of the linearized system.
Z(v(t) = [plioy(t)(X)dX = [5li07(t) (X)dX (6)

with I : [0,T] — C*®(X), I(t) = I € C~(X) and
dX = dX' A --- A dX9, remaining invariant despite all
possible variations, the systelmis non-accessible because
end conditionsyy with It o vy (X) # Iy o vyp (X) or
JpIrovr (X)dX # [,Ir o yr (X)dX are non-reachable
along the trajectory~, n). Since (5) implies an invariant (6),
we consider only invariants of the form (6).

IV. ACCESSIBILITY AND OBSERVABILITY

Next, we pursue the ideas of Section Il and apply the
theory of symmetry groups (Lie groups of transformation),
because variations of solutior{s,n) are identified byl-
parameter symmetry groups, which generate a flowoty,
respectively, and allow to transform solutions into solutions.
To formulate the above considerations in the context of
symmetry groups and to derive criteria for both properties,

Let us consider the output ma@ and the accessibility @dain we suppose to have a solutionn) of the system

map Ar for the observability problem and the accessibility» @nd consider the set of local (pointwise) transformation
group$

5Note that input functions are considered as functions of time, which
are produced, for instance, by feedback control laws, and the properties Q. = (‘I)f, ‘b?) : [O,T] -G (X) Y (Z/l) (9)
observability and accessibility are invariant under feedback.

6The initial conditions are different because of the uniqueness of solu- 8The notation Tjo,7) (N, M) denotes a set of functionf), 7] —
tions. T (N, M).

“Also different types of invariants can be studied. 9G (M) denotesl-parameter transformation groups on a manifalt
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with we prolong their infinitesimal generatot,
(I)f(t):(l)ffE:X%X -1 o «@ j 1 1
(10) J (vat) = v% 10 +d; (UX,t) L JHX) =T (J'(X)).
QY (t) = @ZJE U—-U (18)
In addition, the group actions and the corresponding in-

finitesimal generators with respect t(X’) can easily be
obtained by restricting the group actions and the infinitesimal

and the group parameterc R. The groups are supposed
not to operate onX* such that®, . fulfills

(X1, 5%t (Xi)) = ‘I’t),(a (Xi, 7a(t)(Xi)) generators, respectively.
. ; U i ; (11) Then, we have thatb, . are symmetry groups iff the
(X5 ") (X)) = & (X WHOIC )) J infinitesimal criterion of invariance

wherewith we have variations of the form (3) for fixed group
parametee # 0. To ensure tha. transform solutions into

i " o (0 0
solutions of the systerx, the conditions Z (L8 — 2 ($Bo 4l
a 5 (o) = L@ eranm)|
—~B — B o Al
VX)) = fPoji(v)()(X) (19a)
ot (12)  and
0 = v ey !lle 1)(X 9 v
9”0 (7=,m:) (£)(Xo) 0= 5 (9" ° (3:m:) (1)(X0)) (19b)
must be satisfied with e=0
11
v () = q;i,fa o (t) 3 resp.
ne(t) = (I)Zt/{s on(t). ijf(,t = j' (vx) (fB) 20
= el dy g )i O
Remark 4 Following the ideas of Remark 2, if there is at
least one grou@., where the input and the output remainand
invariant, 0 = wvxs(9”) +vus(g”
2, (9") + v (9%) (20b)
nt)(Xa) = n:(t)(Xo), (14) = 0%,19a9" + v ,0k9” .
ho(y,m) (t)(Xa) = ho(ve,me) (£)(Xo) is satisfied. Thus, we have conditions on the coefficiefits

. I ... v, of the vertical vector fields.
the systent. is non-observable because the initial conditions¥:!

~(0) # 7.(0), £ # 0 cannot be distinguished by means of, Accordlng_ to (4) for the observability there are the addi-
- : tional conditions
the system output. On the contrary, if there is at least one

invariant
0
/ I, 0 (£)(X)dX = / Lov(H)(X)dX  (15) ge MOX0)| =52 e(O(Xo)))
D D = &=
for any group®., the system is non-accessible because aﬁ (ho(y,m) (t)(Xa)) = (21)
there is no neighborhood,,. of v where any end condition c e=0
¥r € V., is reachable. 0
re 5= (ho (12,2 (1)(X0))
The derivation of (local) criteria mainly relies on the fact that =0
AR - resp.
we can use the infinitesimal generators of the transformatiorn 0 = o
groups®; ., = Yy
b 0 = wau(h®) +wue (h), (22)
Vx (t) =vx,t = (%QDW’ ) . = (i)av%7t6a . _ vj‘éiaahc + va,ta’{hg
0 _ur . (16) Apparently, for the observability problem we have a vector
vy (t) = vy = (&q)t,;s ) O = v71,40r; field vy s = vfj .0, = 0.
e=0 ’ ’

which are (vertical) vector fieldsx; = v% ;00 : & = Remark 5 By means of the output equations we have in-
V(X), v = vf,0 U — V(U) on the manifolds gyced group actions op defined by
X, U, respectively. For a systerii we also require the
group actions on the jet manifold® (X). Hence, instead Y = ho(y,n): [0,T] = G () (23)
of prolonging the group actions,
10The prolongation simplifies because of vertical vector fields, see, e.g.,

. X,i 31X, X,a 11, p. 124ff].
-71 ((I)t),(a): ((I)t,qu)t,s vdj ((I)t,a )) :Jl (X)—>J1 (X)v [ b fﬂ

HActually, we should write* (vx ¢ (9%)) +¢* (vi,e (7)), hence, the
(17)  pull-back is neglected since it should be clear from the context.
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with @%fs = ®Y(t) : Y — Y. Using the infinitesimal Theorem, see, e.g., [16], one can write the functional (28)

generators in the form
0
vy () = vy, = <_<1>3f-§) 9 =v5,,0:  (24) / V()" (v, )ALy A dX)
Oe =0 ’ D
andwy,, = 0 for the observability problem the case =7, (7(t))=0 (29)
¢ _ _
’Uy_’t = Vxt (hC) = vxyt(?ahc =0 (25) _|_/ L (’y(t)* (UX,tJ (Ith))) =0
is considered. oD
=I5(7(t))=0
With these insights at our disposal, we are able state a non- )
observability criterion. with the embeddinge : 9D — D and wheredl;
X — T*(X) is the differential of I,. The functional
Theorem 1 If locally the conditions (20) and (22) allow a Z2 (¥(t)) vanishes sincevx ] (I;dX) = 0. Because of

non-trivial vector field0 # vy : X — V(X) along the Ty (y(t)) = 0 we have
trajectory (y,7), the systenk is locally non-observable.
L 60) = [ 10 (o edX) =0 (@0)

Proof: A non-trivial vector fieldvy ; together with D
vyt = 0 induces al-parameter symmetry group, ., which with
allows to derive another solutigry, n) of the systenk, hav- ‘
ing the same input and the same output. Hence, the different we=dl; = (0ily)dX" + (0n1;)da”®
initial conditions~ (0) # 7 (0) are indistinguishable. = — WX 4wt dae

Remark 6 It is worth noting that the approach can alsoandwf‘. = w¥ (1), w¥, = w¥ (1)
be extended straightforward to investigate different types of 1, iﬁcorpz)rate the information thaty , is the generator

system outputs. Moreover, if the observability conditiong; 5 symmetry group we differentiate (30) with respect to
are evaluated along the trajectory, they coincide with thga evolution parameter

linearized systenta (along the trajectory)
AP = (9af’ 0" (v) (1) (X)) Az®
+ (0017 051 (7) (1) (X)) Az
with boundary conditions

0

(26a) Ot / 07 (03 wiadX)

(31)
— / ) (05 + 05 5%) 4X) =0,

(0ag” o (7,1)) Az® 4 (09" o (v,n)) Au" =0 (26b) and use the infinitesimal criterion for invariance to substitute
and outputs for 0% 1.
qu = ((%hg o (v, 77)) Az® + (&Chg o (v, 77)) Au", (26c)

by identifying v%,, ofy . v, With Az®, Aur, Agf, re- / 0 (25, wifsdXp) =
spectively, where the inputs and the outputs have to vanish . . 5 P
for the considered time intervd, T']. :/ () ((“%,taaf +d;(vy )00 f )wde) ‘

i (32)
||}or PDE systems the latter functional is not appropriate in its
actual form because it depends on the derivatiygsy ,) of

For the accessibility problem we are interested in (loca
invariants of the symmetry grougs. of the form

_ components of the vector fieldy ;, and, thus, can contribute
T0e(t) = /D (It 0 7e(D)(X)) dX @7) to the so far vanishing boundary integt&l (y(t)). This is
satisfying a well known problem in the calculus of variations, which
T (7.(t)) = const. alternatively could be solved by using Lepagian forms, see,
e.g., [9]. In order to obtain a form depending only on
or the components of the vector fieldy ;, but not on their
0 0 pe derivatives, we apply the identity
FI0)| = FTELOW)|
* ee) [ 300 (60500 wdx) -
Dv(t) (v ¢ (1:dX)) D

) == [ i) (s (re) ax) @

if vy is an admissible vector field. By using the relation . _j
va i ([idX) = d (va,] (1,dX)) +vx,]d (1,dX) and Stokes’ + /ap (y(t) o) (vx,tht A 3deX)
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with @/ = &, fPw;sdz®, where Stokes’ Theorem is used.w;,, ¥, wy, With Az,, Au¢, Ay, respectively, where

We get the following terms on the domain the (adjoint) inputsAu, and the (adjoint) outputdy,, (with
5 wY = p®w?) have to vanish for the considered time interval
[ 36y (@8 +ofoa) vi ax) 0.7].
i (34)

1 N Jra x\ B In summary, necessary criteria in form of (homogeneous)
B /D‘7 (v(#) (dj (85f wt*”‘) v’fvtdx) linear PDE systems are obtained, where a non-trivial solution
implies a non-trivial transformation group / invariant and
non-observability / non-accessibility, respectively. In addi-
/ (1(£) 0 0)* (aéfawfavfc_taﬂdx) —0. (35) Fion, su.ff_icient (_:onditions are provided_ in form of a priori
oD ’ ’ inequalities, which can be seen as the integral version of the
The equations (34) must now hold along a given trajectorjfévious conditions.
(v,n) and independently from the choice ofy, since
there are no further restrictions on the domain. Thus, forheorem 3 The system® is locally observable along a
equations (34) to hold we require that the correspondiriggjectory (v, n), if the following inequality is satisfied,
braced term vanishes along a trajectdryn) and so the
following conditions for an invariant can be extracted, H (ng) (v ('))ny >c H (“3‘(,0) (70 ('))HFD (39)

and on the boundary

B . X X « | rac, X .
Ut Wip = ~Wia0sf - d; (‘%f Wt,a) - (38) with v§, = vy (r¢) andc € RT, wherev$, , solves (20).
In order to obtain the boundary conditions for an invariant,  p.jo The proof relies on the Local Injectivity Theo-

we pay attention to the vector field restrictions (20) on th?em see, e.g., [21, Theorem 2.5.10, p. 123] and the fact that
boundary. Considering all non-trivial terms the system> is the generator o0, (7). Because of
0ag" v = —0ng" vl 4 » (37) the Closed Range Theor.em_and the inequality _(39) the range
R (DO, (70)) of the derivativeDO,, (yo) at o is closed,
we have to successively substitute corresponding terms dge, e.g., [22]. Thus, there is a neighborhaeg of o,

(35) to incorporate all present boundary conditions of thg, V. on which©, is injective, and the syster is
vector field. Following this procedure, this may require somgpservable along this trajectory. m

distinctions of cases on (parts of) the boundary, hence, by

considering th(_e_special coordinate system we finally 98theorem 4 The systems. is locally accessible along a
boundary conditions of the form trajectory (v, n), if the following inequality is satisfied,

1) G () )7, 2 ell@io) (5 (o) (D)l -, (40)

. ) ) ith wY = p2w?® andc € Rt, wherew? solves (36) and
with suitable functiong?, p§ € C* (v* (J* (X)) xop U). \(Ing;u“ Pt ¢ wherew;, solves (36)

Uit 0 = piwi, (38a)
W, 0 = pRw, (38b)

b

Theorem 2 If locally the conditions (36) and (38) together Proof: The proof relies on the Local Surjectivity
with the conditiondw; A dX = 0, ©; = wi,dz* allow  Theorem, see, e.g., [21, Theorem 2.5.9, p. 122] and the fact

a non-trivial solution leading to an invarianf (y(¢)) = that the systenE, is a generator oD Az, (). Because
Jp Tt o y(t)(X)) dX with 96 1,(X, z) = wi(X,x) # 0, of the inequality (40) the adjoint operatd.A;,_ (1) of
the system is (locally) non-accessible. DAr ., (1) atn is one-to-one and has closed range, see, e.g.,

[22]. Due to the Closed Range Theorem the magr ., ()
onto atn, and, thus, there are open neighborhddgsnd
» such thatATﬁo|un — U, is onto, and the systert
is accessible along this trajectory.
It is worth mentioning that, for instance, [3], [8] contain

Proof: If we assume a non-trivial solution;%,, then
due to the Frobenius Integrability theorem, see, e.g., [1(‘%15]
and do; A dX = 0 we have a (local) solutiord; for the v
PDEsw;*, (X, ) = 0,1:(X, ), depending on*, and a (lo-
cal) non-trivial functionalZ (v(t)) = [, (I; o v(t)(X)) dX.

Then, we can select a poirty in the arbitrarily small equivalent criteria for linear PDE systems.. u
neighborhoodV.,, of ~vr, which fulfills Z (yr) # Z (yr) V. NONLINEAR EXAMPLES

and, obviously, the mappingdr -, is locally not onto since ) ) )

there is no input steering the system to the poift. I.e., Next, nonlinear examples are studied to illustrate the
any neighborhood’,, of v, will not be open and so the theory and results. Let us consider the nonlinear example
system is non-accessible. [ | o g2

X
o . 2 = ziad — a3
Remark 7 If the accessibility conditions are evaluated along i 1 . 1 )
the trajectory, they coincide with the adjoint system of rm = (1+~”C )951
X

the linearized systenta, see, e.g., [19], by identifying it = 0

(41a)
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onD = [0,1] for z* > 0 with the boundary terms on D and
_ .3 1,11 .2 2 1.2 .1
O=24u',y =2,y =z (41b) Ué,t50—<—1—xxw2I>wfl—:c2w;g 49)
on dD.
on 9D; and

Proposition 1 The system (41) is locally non-observable 1 X ) X
along the trajectory(v,n) with (v*) (¢) (X) = (0,0,0,1), Vxpt 0=win, Vgt O=wip (49)
"™ (t) (X) =0 and anyT" > 0. on 9D, = {1}. A non-trivial solution is given by

Proof: According to Theorem 1 the observability xr _ G(t—X—(T—-1+0))
conditions follow to Wi = 72 g 50

o, = vi, o, Bl =X (T 140! (50)

. = 3 ,

Ug(,t = 2%d; (v§(7t) + f%”%{,t —d (va,t) (42) (gg2)

03, = 2toy, + (T+a%)di (v})) which fulfills d (wf¥,da’ + wg,da?) A dX = 0 and leads to

4 = 0 the invariant

Vxt

22 _ ol
on D and L(X,2) = —¢p(t — X — (T — 1+ b))~ (51)
X
O:v}(,ta O:vgf,ta O:vgf,ta O:vlil,t (43) with

ondD. There is a vector fieldx ; = 9, with v}, , = v% , = o la] < b
v3 , = 0 solving the equations along the trajectory such that P(a) = 0 la| > b

the system (41) is non-observabie: ; is the generator of a
symmetry group withy. = ®*_ (v) = (v',7%,7%7* +¢). andb € R* for anyT > 0 such that the system (44) is

Hence, all solutiong~.,n) with different initial conditions non-accessible along any trajectory for dfiy> 0. [ |
lead to the same outputg’ = ~!(t)(Xs) = 0, y> = Finally, let us consider the nonlinear example, see, e.g., [23],
72 (t) (Xa) = 0. = 4 3
Next, let us consider the nonlinear example, see, e.g., [19], )
2 = a3 (52a)
1,.2 1y,.2 1.2 1
f,t'l _ (CE.T _‘T)‘Tl—’—xlx .3 o 2 X 2 X
= o , (44a) = o (X,x)z] + a2 (X, 2)
? = —a%2? with a3, a0 € C* (X) anday (X, z) > 0, a2 (X,0) =0
— + H
with D = [0, 1] for 2 > 0 and the boundary conditions onD =0, L], L € R™ with the boundary terms
O:xl—i—ul, O:I2+U1 (44b) 0=x2+u17y1=:€1 (52b)
on 9D, = {0} C 9D for u' > 0. on 9D. Let Fp = C?[0,L], 7, = C?[0,L] x [0,T],

Fy = C*[0,T], see, e.g., [23] for a discussion of the
Proposition 2 The system (44) is locally non-accessiblavell-posedness of solutions, then we have the following
along any trajectory for any” > 0. observability result.

Proof: The infinitesimal principle of invariance delivers

the conditions Proposition 3 The system (52) is locally observable along

a trajectory (y,n) with T' > L /info< x1<, a1.

1 B (22 — 1)2? 1 rla? 5
Yre =TT T eyt Proof: According to Theorem 1 the observability
ok ) — sl xld w2 ) (45) conditions follow to
, ; 2X’t , :1022 W) 1.)}\’,15 = vg(,t
Uyt = —TUx— X dl(vx,t) bgfyt = d; (v}yt)
on the domairD and 0%, = 223 (vl + dearvd, + dzarvd )
0= vk,t + vg,,t ,0= vﬁc,t + vg,,t (46) —|—81a2v}(7t + (?Qagvg(,t + agagvgg,t
on the boundary)D;. According to Theorem 2 the (local) +aid; (v )
accessibility conditions follow as (53)
D and
) (ZC2 _ 1)1.2 on
Aol = ST - ), 0= ks 0= %, 0= oy, (5
1,.2 . . .
. Ty on 9D. Using the result of [23] the inequalit
W, oy = Wwi(l + 2w, g (23] quality

1.2 H(Uﬁ() (7())”fy zc H(”?(,O) (0 ())H]:D )

1
rxrs —x X 2 x
—d ( 22 Wnl) — i (#%wil) is satisfied, where depends off’, and because of Theorem
(47) 3 the system (52) is observable along such a trajectomy.
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VI. CONCLUSIONS [17] M. Renardy and R. RogersAn Introduction to Partial Differential

| hi icle fi intrinsic f lati f | Equations 2nd ed. Springer, 2003.
n this article first an Intrinsic formulation for a class [18] H. Nijmeijer and A. van der SchaftNonlinear Dynamical Control

of first-order PDE systems with boundary conditions and  Systems New York, USA: Springer, 1990.

boundary interaction was provided by using differentiall® K. Rieger and K. Schiacher, “Accessibility Conditions for PDE Sys-
ical hods. Th h ical h tems and the Adjoint System,” ifProceedings of NOLCOS 2010,
geometrical methods. Then, a group-theoretical approach ccepted Bologna. Italy. 2010,

was proposed to tackle both the problem of accessibilit0] R. Hermann and A. Krener, “Nonlinear controllability and observ-

and observability along a fixed trajectory and we illustrated é‘gi'sitlg';(')'f'iggra”sacm’”s on Automatic Contralol. 22, no. 5, pp.

that (local) observability and accessibility criteria could bg1; g Apraham, J. E. Marsden, and T. Rafianifolds, Tensor Analysis,
provided by using an infinitesimal principle of invariance. In  and Applications 2nd ed. Springer, 1983.
particular, group invariants were studied, which are knowf§2l D. Werner,Funktionalanalysis Springer, 2007. N

- 3] L. Guo and Z. Wang, “Exact boundary observability for nonau-
fc_)r_t_he observablllty prOblem and _uqknown for the acces- tonomous quasilinear wave equationigurnal of Mathematical Anal-
sibility problem. It is worth mentioning that due to the ysis and Applicationsvol. 364, no. 1, pp. 41 — 50, 2010.

underlying geometric structures the methods can be extended

straightforward to higher-order (and coupled) PDE systems APPENDIX
with various boundary conditions. Let £ and M be smooth manifolds, then a bundle is a
triple (€, 7, M) with the total manifold€, the base manifold
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