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Abstract— We study social decision problems and Nash
games for a class of linear-quadratic-Gaussian (LQG) models
with N decision makers possessing different dynamics. For
the social decision case, the basic objective is to minimize
a social cost as the sum ofN individual costs containing
mean field coupling, and the exact social optimum requires
centralized information. Continuing from the previous work
(Huang, Caines, and Malhaḿe, 2009 Allerton Conference), we
develop decentralized cooperative optimization so that each
agent only uses its own state and a function which can be
computed off-line. We prove asymptotic social optimality results
with general vector individual states and continuum dynamic
parameters. In finding the asymptotic social optimum, a key
step is to let each agent optimize a new cost as the sum of its
own cost and another component capturing its social impact
on all other agents. We also discuss the relationship between
the socially optimal solution and the so-called Nash Certainty
Equivalence (NCE) based solution presented in previous work
on mean field LQG games, and for the NCE case we illustrate a
cost blow-up effect due to the strength of interaction exceeding
a certain threshold.

I. I NTRODUCTION

Mean field decision models have attracted extensive at-
tention due to their significance in many domains [3], [5],
[6], [7], [9], [17], [18], [22], [26], [28]. In such models, a
distinctive feature is the interaction between any given agent
and the average effect of the overall population of agents. In
the search for decentralized optimization paradigms, game
theoretic solutions have been successfully developed by dif-
ferent researchers [9], [10], [28], [29], [20], [21], [22], [23];
along this line, decentralized solutions may be obtained by
identifying a consistency relationship between the individual-
mass interaction such that in the population limit each
individual optimally responds to the mass effect and these
individual strategies also collectively produce the same mass
effect presumed in the first place [9], [10], [13], [14], [8]. Un-
der reasonable conditions we have shown the existence of a
mass effect satisfying such a fixed point property and proven
that the resulting set of decentralized individual strategies is
an asymptotic Nash equilibrium. This solution property has
been designated as the Nash Certainty Equivalence (NCE)
principle [10], [15]. Closely related mean field approximation
approaches were developed in [28], [29] using the notion of

M. Huang is with School of Mathematics and Statistics, Carleton Univer-
sity, Ottawa, ON K1S 5B6, Canada.mhuang@math.carleton.ca.

P. E. Caines is with Department of Electrical and Computer
Engineering, McGill University, Montreal, QC H3A 2A7, Canada.
peterc@cim.mcgill.ca.

R. P. Malhamé is with Department of Electrical Engineering,
École Polytechnique de Montréal, Montreal, QC H3C 3A7, Canada.
roland.malhame@polymtl.ca.

oblivious equilibria (OE) for games on industry dynamics,
and OEs with unbounded costs were analyzed in [1]. The
works [20], [21], [22] adopted a similar consistency based
approach for mean field games, but for each finite population
size a simplifying assumption was used stipulating that each
agent’s strategy depends only on its own driving Brownian
motion. In [23], the interaction-consistency based approach
was applied to models with long term average costs. A
game theoretic framework was proposed in [32] for the
control of coupled nonlinear oscillators, and the mean field
approximation approach was applied to obtain decentralized
strategies and further study phase transition of the closed-
loop system.

The above game theoretic solution framework is based on
the assumption that these agents are individually incentive
driven and noncooperative. In [11], within the mean field
modeling we studied a different situation where the agents
are cooperative and seek socially optimal decisions. We note
that the notion of social optima has long been a central
issue in decision problems with multiple agents, and Pareto
optimality is well known as one approach for characterizing
social optimality [2], [24]. The goal of this paper is to study
how the agents in a mean field LQG model should choose
their strategies for optimizing a social objective in the social
decision setting, or optimizing individual objectives in a
Nash game setting. We generalize the preliminary analysis
in [11] which considered a finite number of classes of agents
and proved social optimality results for uniform agents with
scalar states. For the social decision problem, we consider
both i) centralized strategies where each agent may use the
state information of all agents and ii) decentralized strate-
gies where each agent only uses local information. Related
numerical comparison of the optimized costs between the
socially optimal solution and the NCE based game theoretic
solution was provided in [19], where each agent assigns
nonuniform cost coupling weights across the population.
For stochastic differential games, cooperation issues were
addressed in [31] by extending concepts such as coalition
and Shapley value to dynamic models. But in general, this
approach will not lead to social optima.

As a historical connection, it is worth briefly comparing
the current work with classical team decision problems,
where all the agents share a common cost but have different
information regarding the system state and other agents’
strategies, which is specified by the so-called information
structure [16], [27]. Our social optimization problem with
decentralized information may be viewed as a mean field
generalization of team problems where each agent has a
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priori information but no real time information on other
agents. The local forecast of the mean field effect is now
a part of the control problem. This leads to the development
of the Social Certainty Equivalence (SCE) methodology,
whereby the fundamental idea is to first quantify the social
cost change due to the control perturbation of a given
agent and subsequently apply mean field approximations.
We mention that a team formulation of mean field Markov
decision with discount was developed in [26]. A fixed
point approach was used there to show the existence of
an optimum when restricted to stationary strategies. This
approach ignores the transient behavior of the mean field
and may lead to optimality loss.

The organization of the paper is as follows. The socially
optimal control problem is formulated in Section II. The
centralized solution is analyzed in Section III. Section IV
presents the SCE methodology and the asymptotic optimality
theorem. Section V analyzes the scalar case and provides
a comparison with the NCE equation system. Section VI
presents the explicit calculation of the asymptotic average
social optimum, and Section VII concludes the paper.

II. T HE SOCIALLY OPTIMAL CONTROL PROBLEM

A. Dynamics and Costs

Consider a system ofN agents. The dynamics of agenti
are given by the stochastic differential equation (SDE)

dxi = A(θi)xidt + Buidt + DdWi, t ≥ 0. (1)

The underlaying filtration is(Ω,F ,(Ft )t≥0,P), where
(Ft)t≥0 is a collection of non-decreasingσ -algebras. The
statexi and controlui are, respectively,n andn1 dimensional
vectors. The initial states{xi(0), 1≤ i ≤ N}, are indepen-
dent and measurable onF0, and E|xi(0)|2 < ∞. The noise
processes{Wi, 1≤ i ≤ N} are n2 dimensional independent
standard Brownian motions adapted toFt , which are also in-
dependent of{xi(0),1≤ i ≤ N}. The constant matricesA(·),
B andD all have compatible dimensions. Hereθi denotes a
dynamic parameter associated with agenti. The variability
of θi is used to model a population of nonuniform agents.
We only takeA(·) to be dependent onθi for the purpose
of notational simplicity. When other matrix parameters for
agenti also depend onθi, the analysis is similar and will not
be given in detail. For notational brevity the time argument
for a process (xi, ui, etc.) is often suppressed when the value
of that process at timet is used. Denotex = [xT

1 , . . . ,xT
N ]T

andu = [uT
1 , . . . ,uT

N ]T .
The individual cost for agenti, 1≤ i ≤ N, is given by

Ji(u(·)) =E
∫ ∞

0
e−ρt{

[
xi −Φ(x(N))

]T
Q

[
xi −Φ(x(N))

]

+ uT
i Rui}dt, (2)

whereΦ(x(N)) = Γx(N) +η andx(N) = (1/N)∑N
i=1 xi. We call

x(N) the mean field term. All the constant matrices or vector
Γ, Q ≥ 0, R > 0 andη have compatible dimensions. We use
u(·) (or u) to denote theN individual control processes, and
also call it the control of the overall system. By a slight

abuse of notation sometimes we will writeu = (u1, . . . ,uN).
The social cost is defined as

J(N)
soc(u(·)) =

N

∑
i=1

Ji(u(·)).

The objective is for the agents to minimizeJ(N)
soc. To achieve

this, from the point of view of an individual’s control
selection, it is necessary to maintain a delicate balance in
reducing its own cost and also taking into account the social
impact of such reductions (i.e., affecting the sum of the costs
of all other agents).

For the large population system, a natural way for mod-
eling the sequence of dynamic parametersθ1, . . . ,θN is to
view it as being sampled from an underlying parameter
space such that whenN → ∞, the sequence exhibits certain
statistical properties; this is made precise by assumption (A1)
below. However, we stipulate that{θi, i ≥ 1} is treated as
a deterministic sequence. We assume that eachθi is in a
compact setΘ ⊂ R

κ . For a givenN, define the empirical
distribution function

FN(θ ) =
1
N

N

∑
i=1

1{θi≤θ}, (3)

whereθ ∈ R
κ andθi ≤ θ holds componentwise for the two

vectors. We make the assumptions.
(A1) There exists a distribution functionF(θ ) on R

κ such
that FN converges toF weakly, i.e., for any bounded and
continuous functionϕ(θ ) on R

κ ,

lim
N→∞

∫
ϕ(θ )dF (N)(θ ) =

∫
ϕ(θ )dF(θ ). ♦

(A2) The initial states{xi(0),1≤ i ≤ N} are independent,
Exi(0) = m0 for a fixed m0 and all i ≥ 1, and there exists
c0 < ∞ independent ofN such that supi≥1 E|xi(0)|2 ≤ c0. ♦

(A3) A(θ ) is a continuous matrix function ofθ ∈Θ, where
Θ is a compact subset ofRκ . ♦

(A4) For θ ∈ Θ, (i) the pair[A(θ )− (ρ/2)I,B] is stabiliz-
able and (ii) the pair[Q1/2,A(θ )− (ρ/2)I] is detectable.♦

In the special case whereΘ = {1, . . . ,K} for some finite
integerK, the empirical distribution ofθ1, . . . ,θN reduces to
a probability mass function onΘ, denoted asπ (N), and (A1)
reduces to the convergence ofπ (N) to a limit π . In addition,
(A3) is trivially true under the discrete topology ofΘ where
an open set is the union of singletons or is the null set. Thus
(A3) becomes redundant.

It is possible to generalize our analysis to different initial
means as long as{Exi(0), i ≥ 1} has a limiting empirical
distribution (see related discussions in [10]).

B. Two Solutions Based on Different Information Patterns

We will study two problems for optimizingJ(N)
soc according

to different information patterns.
Problem I-A – Find a social solution(u1, . . . ,uN) with

centralized information (SSCI), where eachui in a feedback
form is a function of(t,x1, . . . ,xN) for attaining the minimum
of J(N)

soc.
Problem I-B – Find a social solution(u1, . . . ,uN) with de-

centralized information (SSDI), where eachui in a feedback
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form is a function of(t,xi). Note that when restricted to
decentralized information, the set of controls of theN agents
will not in general attain the same cost as in Problem I-A.
Instead, a set of decentralized strategies{ui, 1≤ i ≤ N} is
sought such that the optimality loss with respect to Problem
I-A in minimizing J(N)

soc tends to zero whenN → ∞.
For comparison with our previous work, the following

problem will also be reviewed.
Problem II – Find a competitive solution(u1, . . . ,uN) with

decentralized information (CSDI), where agenti is associated
with the costJi and the objective is to obtain a set ofε-Nash
strategies such that eachui is a function of(t,xi).

For a detailed account of this competitive solution frame-
work, the reader is referred to [10].

III. T HE CENTRALIZED SOLUTION

Problem I-A leads to a standard LQG control problem
and the optimal control law(û1, . . . , ûN) may be determined
from a high dimensional algebraic Riccati equation (ARE)
if the standard stabilizability and detectability conditions
are satisfied [30]. We first give a reinterpretation of each
individual component in(û1, . . . , ûN), which will motivate
the construction of decentralized strategies via a mean field
approximation argument. The analysis here is similar to
the person-by-person optimality characterization of team
decision problems [16].

A. Centralized Optimal Control: Person-by-person Optimal-
ity

To facilitate further analysis, denote F 0
t =

σ(x(0),W1(s), . . . ,WN(s), s ≤ t) for t ≥ 0, which is
the σ -algebra generated byx(0) and the Brownian
motions up to time t. Denote the control set
Uo : = {(u1, . . . ,uN)|ui(t,ω) is adapted toF 0

t ,∀i}, where
ω ∈ Ω explicitly indicates the dependence ofui on the
sample. Eachu = (u1, . . . ,uN) ∈Uo is called anF 0

t -adapted
control and may be viewed as a functional ofx(0) and
the Brownian motions without being related to the state
processx(t). The distinction betweenF 0

t -adapted controls
and feedback strategies should be clear from the context.

Given x(0), a very important observation for Prob-
lem I-A is that any feedback control lawu(t,x) =
(u1(t,x), . . . ,uN(t,x)), if continuous in(t,x) and Lipschitz
continuous inx (thus ensuring a unique strong solution to the
closed-loop system), naturally induces a process on[0,∞),
denoted asu(t,ω) which belongs toUo. This is due to the
fact that we may express the closed-loop solutionx(t) in
terms of x(0) and the Brownian motions. Note that under
the stabilizability and detectability conditions, the optimal
control law is a linear feedback control law, indeed satisfying
the above continuity assumptions; the reader is referred to
[4], [30], [8] for detail. The benefit of introducing the control
setUo is that one can fix the controls of other agents while
allowing a selected agent to perturb its control.

Let the optimal control minimizingJ(N)
soc be denoted by

û = (û1, . . . , ûN), which is now interpreted as a control from
Uo. Let x̂i correspond to ˆui. Denote ˆx(N) = (1/N)∑N

j=1 x̂ j

and x̂(N)
−i = (1/N)∑N

j 6=i, j=1 x̂ j. For 1≤ i ≤ N, let Uoi : =

{ui|ui(t,ω) is adapted toF 0
t }. Givenu ∈ Uo, defineu−i =

(u1, . . . ,ui−1,ui+1, . . . ,uN), and û−i is defined similarly.
Lemma 1: [11] Assume (A4) and letx(0) be given. Sup-

pose that ˆu ∈ Uo attains the minimum ofJ(N)
soc with the

admissible control setUo. Then ûi is the unique optimal
control for the control problem:

(P0) dxi = A(θi)xidt + Buidt + DdWi, t ≥ 0, (4)

J0
i (ui) = J(N)

soc(û1, . . . , ûi−1,ui, ûi+1, . . . , ûN), (5)

whereJ0
i (ui) is to be minimized withui ∈ Uoi. �

Let û be as in Lemma 1. Due to the coupling of the states
in J(N)

soc , ûi in general will depend on allWj, j = 1, . . . ,N. In
the following we give a reformulation of Problem (P0).

Lemma 2: [11] Assume (A4). In finding the optimal con-
trol ûi ∈ Uoi, Problem (P0) is equivalent to the optimal
control problem:

(P1) dxi = A(θi)xidt + Buidt + DdWi, t ≥ 0, (6)

J1
i (ui) = E

∫ ∞

0
e−ρtL(xi, x̂

(N)
−i ,ui)(t)dt, (7)

whereJ1
i (ui) is to be minimized withui ∈ Uoi, and

L = xT
i [(I−Γ/N)T Q(I−Γ/N)+ (N−1)/N2ΓT QΓ]xi

−2(Γx̂(N)
−i + η)T Q(I −Γ/N)xi

−2{[I− (1−1/N)Γ]x̂(N)
−i − (1−1/N)η}TQΓxi + uT

i Rui.
(8)

�

Lemma 2 shows that all other agents’ effect onJ1
i (ui)

appears in the form of ˆx(N)
−i . This feature is useful for finding

a decentralized suboptimal controlui in Section IV by a
deterministic approximation of ˆx(N)

−i .

B. Explicit Solutions: Uniform Agents with Scalar States

For uniform agents with scalar individual states,A(θi) in
(1) is denoted by the same numberA. To avoid triviality,
supposeB 6= 0. Without loss of generality, we setQ = 1 in
(2). To quantify the interaction between an individual agent
and the mean field, we introduce the parametrization

Γ = γ, η = γη0, (9)

whereγ is a parameter andη0 is fixed. SoΓ andη are scaled
by the same parameterγ. If we apply the parametrization (9)
to the original mean field model (1)-(2), a largerγ means
stronger interaction betweenxi andx(N) +η0. Now Φ(x(N))=
γ(x(N) + η0). Denote1N = [1, . . . ,1]T consisting ofN ones.
By rearranging the integrand ofJ(N)

soc, we write

J(N)
soc = E

∫ ∞

0
e−ρt(xT Q̂x +2Gx + RuTu + Nγ2η2

0)dt, (10)

whereG = γη0(γ −1)1T
N and Q̂ is given in the form

Q̂ =





α β · · · β
β α · · · β
...

. . .
...

β β · · · α




, (11)
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andα = (1− γ
N )2+ (N−1)γ2

N2 = 1+ γ2−2γ
N , β = γ2−2γ

N = α −1.

The eigenvalues of̂Q are given by

λ1 = α +(N −1)β = (1− γ)2, λ2 = . . . = λN = α −β = 1.

A similar LQG control problem was briefly analyzed in [10],
where the coupling term in agenti’s cost J′i is Φ′(x) =
γ(1/N ∑ j 6=i x j +η0) instead ofΦ(x(N)) and where the social
cost isJ′ = ∑N

i=1 J′i . A very subtle difference between the two
formulations is that given anyγ, the pair[Q′1/2,(A−ρ/2)IN]
in [10] is always observable for all sufficiently largeN, where
Q′ appears in the quadratic termxT Q′x in J′, while this is not
the case whenΦ is used. As it turns out, whenΦ is used
and γ = 1, span{1N} is always an unobservable subspace
for the system so that the state vector’s component within
span{1N} is not penalized by the cost. To minimize (10), we
set a deterministic initial conditionx(0) = z and write the
optimal costv in the form

v(z) = zT Pz+2sT
1 z+ s0. (12)

Invoking the standard results of LQG control [4], [8], [25],
we have

2(A−ρ/2)P−B2R−1P2 + Q̂ = 0, (13)

ρs1 = As1−B2R−1Ps1 + γη0(γ −1)1N, (14)

ρs0 = −B2R−1sT
1 s1 + D2Tr(P)+ Nγ2η2

0 , (15)

which results inP ∈ R
N×N of the form

P =





p q · · · q
q p · · · q
...

. . .
...

q q · · · p




. (16)

We consider two cases. LetIN be theN×N identity matrix.
Case 1: γ 6= 1 so thatλ1 > 0. Then clearlyQ̂ > 0 and

the pair [Q̂
1
2 ,(A−ρ/2)IN] is observable, so that (13) has a

unique solutionP > 0.
Case 2: γ = 1 so thatλ1 = 0. Then[Q̂

1
2 ,(A−ρ/2)IN] is

not fully observable. By using an orthogonal transformation
Ψ such thatΨT Q̂Ψ = Diag(λi) = : ΛQ̂, from (13) we obtain

2(A−ρ/2)ΨTPΨ−B2R−1(ΨT PΨ)2 + ΛQ̂ = 0.

We restrict the entry ofΨT PΨ at the first row and the first
column to be zero, corresponding to the unobservable state
in the new coordinate system. Then we may find a unique
ΨT PΨ ≥ 0 of rank N − 1, and subsequently findP ≥ 0 to
(13).

For simplicity, below we analyze Case 1 in detail. Substi-
tuting P into (13) and denotinga = A−ρ/2, b = B/

√
R, we

obtain the following equations

2ap−b
2
[p2 +(N −1)q2]+ α = 0, (17)

2aq−b
2
[2pq +(N−2)q2]+ β = 0. (18)

Under the conditionP > 0, solving (17)-(18) yields

pN =
a+

√
a2 + b

2

b
2 +

√
a2 +(1− γ)2b

2−
√

a2 + b
2

Nb
2 , (19)

qN =

√
a2 +(1− γ)2b

2−
√

a2 + b
2

Nb
2 , (20)

where the subscript inpN andqN indicates their dependence
on N. Furthermore, we obtain

s1 =
γη0(γ −1)

(ρ/2)+

√
a2 +(1− γ)2b

2
1N = : s111T

N , (21)

which does not depend onN.
Proposition 3: [11] If γ 6= 1, then the pair [(A −

ρ/2)IN,BIN ] is controllable, the pair[Q̂1/2,(A− ρ/2)IN] is
observable, and (13) has a unique solutionP > 0 given by
(16) and (19)-(20). �

Let u∗ = (u∗1, . . . ,u
∗
N) be the optimal control law. Then

u∗i = −BR−1pNxi −BR−1qN ∑
k 6=i

xk −BR−1s11, (22)

wheres11 is defined in (21). Define

p∞ = lim
N→∞

pN =
ā+

√
ā2 + b̄2

b̄2
.

Proposition 4: Assume γ 6= 1 and (A2) holds with
Exi(0) = m0, Var(xi(0)) = σ2

0 for all i. Then the optimal
social cost per agent whenN → ∞ is

lim
N→∞

(1/N) inf
u∈Uo

J(N)
soc(u) = σ2

0 p∞ + m2
0

ā+
√

ā2 +(1− γ)2b̄2

b̄2

+2m0s11 +(1/ρ)
(
D2p∞ + γ2η2

0 − b̄2s2
11

)
. (23)

�

We continue to examine the limiting dynamics of the
closed-loop system whenN → ∞. It is sufficient to consider
a given agent. By (22), agenti has the closed-loop dynamics

dxi = (A− b̄2pN)xidt − b̄2qN ∑
j 6=i

x jdt − b̄2s11dt + DdWi.

(24)

Denote the ordinary differential equation (ODE)

dx̄c =

[
(ρ/2)−

√
ā2+(1− γ)2b̄2

]
x̄cdt − b̄2s11dt,

where ¯xc(0) = Exi(0) = m0. It is easy to obtain the explicit
expression of ¯xc. Denote

h(t) =

[√
ā2 +(1− γ)2b̄2−

√
ā2 + b̄2

]
x̄c(t)+ b̄2s11.

Proposition 5: Denotex(N) = (1/N)∑N
i=1 xi in (24). As-

sumeγ 6= 1 and letyi satisfy

dyi = (A− b̄2p∞)yidt −hdt + DdWi, (25)

whereyi(0) = xi(0). Let ρ̂ ∈ (0,ρ ] be fixed such that(ρ −
ρ̂)/2−

√
ā2 +(1− γ)2b̄2 < 0. Then

sup
t≥0

e−ρ̂t
{

E|x(N)(t)− x̄c(t)|2 + E|xi(t)− yi(t)|2
}

= O(1/N).

�

M. Huang et al. • Social Certainty Equivalence in Mean Field LQG Control: Social, Nash and Centralized Strategies 

1528



IV. T HE SOCIAL CERTAINTY EQUIVALENCE

METHODOLOGY AND DECENTRALIZED STRATEGIES

For integer k ≥ 1 and real numberδ > 0, define
Cδ ([0,∞),Rk) consisting of all f ∈ C([0,∞),Rk) such that
supt≥0 | f (t)|e−δ ′t < ∞ for someδ ′ < δ . The parameterδ ′

may change withf .

A. The Mean Field Approximation

For large N, it is plausible to approximate ˆx(N)
−i =

(1/N)∑ j 6=i x̂ j in (8) by a deterministic function ¯x. As an
approximation to Problem (P1), we construct the auxiliary
optimal control problem:

(P2) dxi = A(θi)xidt + Buidt + DdWi, (26)

J∗(ui) = E
∫ ∞

0
e−ρtL∗(xi,ui, x̄)dt,

whereJ∗ is to be minimized and

L∗(xi,ui, x̄) = xT
i Qxi −2(Γx̄+ η)T Qxi

−2[(I−Γ)x̄−η ]T QΓxi + uT
i Rui (27)

as an approximation ofL in (8). To ensure thatJ∗ is finite,
we restrict that ¯x ∈Cρ/2([0,∞),Rn).

For θ ∈ Θ, denote the ARE

ρΠθ = Πθ Aθ + AT
θ Πθ −Πθ BR−1BT Πθ + Q, (28)

whereAθ := A(θ ). Under (A4), (28) has a unique solution
Πθ ≥ 0. Denote the ODE

ρsθ =
dsθ
dt

+(AT
θ −Πθ BR−1BT )sθ

− [(ΓT Q+ QΓ−ΓTQΓ)x̄ +(I−ΓT )Qη ], (29)

which does not have a pre-specified initial condition. In
fact, if x̄ ∈ Cρ/2([0,∞),Rn), one may use the fact thatAθ −
BR−1BT Πθ − (ρ/2)I is asymptotically stable to identify a
unique initial conditionsθ (0) provided thatsθ (t) is required
to be withinCρ/2([0,∞),Rn); see [8, Lemma A.2] for related
detail.

Assume that ¯x has been given. Following the method in
[4], [10], [14], [8], we may use (A4) and Lemma 11 to show
that if sθi ∈Cρ/2([0,∞),Rn) satisfies (29) after settingθ = θi,
the optimal control law ˆui for Problem (P2) is

ûi = −R−1BT (Πθixi + sθi). (30)

The closed-loop dynamics take the form

dxi = Aθixidt −BR−1BT (Πθixi + sθi)dt + DdWi, (31)

where the initial condition isxi(0).
We construct the equation system with the dynamic pa-

rameterθ ∈ Θ

ρsθ =
dsθ
dt

+(AT
θ −Πθ BR−1BT )sθ

− [(ΓT Q+ QΓ−ΓTQΓ)x̄ +(I−ΓT )Qη ], (32)
dx̄θ
dt

= Aθ x̄θ −BR−1BT (Πθ x̄θ + sθ ), (33)

x̄ =
∫

x̄θ dF(θ ), (34)

where ¯xθ (0) = m0 due to (A2) for the initial mean of all
agents, andsθ is sought withinCρ/2([0,∞),Rn). The first
two equations are based on (29) and (31), and (34) is based
on interaction consistency, i.e., the mean field assumed at the
beginning should be replicated when averaging the individual
closed-loop dynamics of a large number of agents. This
equation system will be referred to as the Social Certainty
Equivalence (SCE) equation system.

In general, the existence and uniqueness analysis of a
solution to (32)-(34) may be developed using fixed point
methods as in [10], [13] for NCE equation systems. After
a solution is obtained, theN agents in the social optimal
control problem may determine their strategies by (30).

B. The Social Optimality Theorem

We state the assumption on the existence of a solution to
the SCE equation system.

(A5) There exists a solution(sθ , x̄θ , x̄,θ ∈ Θ) to the SCE
equation system (32)-(34) such that each component of
(sθ , x̄θ , x̄), as a function oft, is within Cρ/2([0,∞),Rn) and
such that bothsθ and x̄θ are continuous inθ for each fixed
t ∈ [0,∞). ♦

Let F (N) be the empirical distribution specified by (A1).
DefineεN ≥ 0 by

ε2
N =

∫ ∞

0
e−ρt

∣∣∣∣
∫

x̄θ (t)dF(N)(θ )−
∫

x̄θ (t)dF(θ )

∣∣∣∣
2

dt.

Lemma 6: [12] Suppose that (A1)-(A5) hold. Letx̂i be the
closed-loop solution of agenti under the SCE based control
law (30) and ˆx(N) = (1/N)∑N

i=1 x̂i. Then

E
∫ ∞

0
e−ρt |x̂(N)(t)− x̄(t)|2dt ≤C(1/N + ε2

N),

where limN→∞ εN = 0. �

The asymptotic performance of the SCE based strategies
is characterized by the central result below.

Theorem 7: [12] Assume (i) (A1)-(A3), (A4)-(i) and (A5)
hold; (ii) Q > 0 andI−Γ is nonsingular. Then the set of SCE
based control laws{ûi = −R−1BT (Πθi x̂i + sθi), 1≤ i ≤ N}
has asymptotic social optimality, i.e., for ˆu = (û1, . . . , ûN),

|(1/N)J(N)
soc(û)− inf

u∈Uo
(1/N)J(N)

soc(u)| = O(1/
√

N + εN),

whereUo is defined in Section III-A as a set of centralized
information based controls. �

Note thatQ > 0 implies (A4)-(ii). Hence it is ensured by
(A4)-(i) and (ii) that (28) has a unique solutionΠθ ≥ 0 and
that A(θ )−BR−1BT Πθ − (ρ/2)I is asymptotically stable.

Note that for the scalar model with uniform agents and the
parametrization (9), the requirement of a nonsingularI −Γ
reduces toγ 6= 1. The invertibility of I −Γ is used for prior
integral estimates of the state process provided that the social
cost is finite [12].
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C. Explicit Solutions with Uniform Agents

For uniform agents (i.e.,θi ≡ θ andA(θi) ≡ A), the SCE
equation system (32)-(34) becomes

dx̄
dt

= (A−BR−1BT Π)x̄−BR−1BT s, (35)

ds
dt

= QΓx̄ +(ρI−AT + ΠBR−1BT )s+ ηΓ, (36)

where we denoteΠθ = Π, sθ = s and x̄θ = x̄ by omitting the
subscript and

QΓ = ΓT Q+ QΓ−ΓTQΓ, ηΓ = (I−ΓT )Qη . (37)

A solution (s, x̄) of (35)-(36) is said to be within
Cρ/2([0,∞),R2n) if both s and x̄ are withinCρ/2([0,∞),Rn).
We have the following existence and uniqueness theorem.

Theorem 8: [12] Suppose that (A4) holds for A(θ ) = A
and that QΓ = ΓT Q + QΓ − ΓT QΓ ≥ 0. Then the equa-
tion system (35)-(36) has a unique solution(s, x̄) within
Cρ/2([0,∞),R2n). �

D. Connection with the NCE Equation System

To compare with our past work on Problem II, we review
the NCE approach for the game problem when agenti is as-
sociated with costJi (see e.g., [10]). To obtain decentralized
strategies, this approach proceeds as follows.

First, the representative agenti approximates the coupling
term Γx(N) + η in (2) by a deterministic functionΓx̄ + η
and solves an optimal tracking problem. Next, the mean
trajectoryExi for the closed-loop of agenti is determined by
an ODE. Finally, the state average of all the individual agents
shall replicate ¯x initially assumed. This procedure leads to
the NCE equation system

ρs†
θ =

ds†
θ

dt
+(AT

θ −Πθ BR−1BT )s†
θ −Q(Γx̄† + η), (38)

dx̄†
θ

dt
= Aθ x̄†

θ −BR−1BT (Πθ x̄†
θ + s†

θ ), x̄†
θ (0) = m0, (39)

x̄† =

∫
x̄†

θ dF(θ ). (40)

The superscript in(s†
θ , x̄†

θ , x̄†) distinguishes the solution from
that of the SCE equation system. The set of strategies

ui = −BR−1(Πθixi + s†
θi
), 1≤ i ≤ N (41)

is anε-Nash equilibrium [10]. The NCE and SCE equation
systems differ by a different equation fors†

θ .

V. THE SCALAR MODEL WITH UNIFORM AGENTS

Recall that for the scalar model, we setQ = 1 and assume
B 6= 0, and thatΓ and η are parametrized according to (9).
Let Π > 0 be the solution to the ARE

ρΠ = 2AΠ−B2R−1Π2 +1.

Let β1 =−A+B2R−1Π andβ2 =−A+B2R−1Π+ρ . Follow-
ing the notation in Section III-B, denote ¯a = A−ρ/2, b̄ =

B/
√

R. We haveβ1 =−(ρ/2)+
√

ā2 + b̄2 and β2 = (ρ/2)+√
ā2 + b̄2.

A. Comparison of Solvability of the Two Equation Systems

Now, the SCE equation system (32)-(34) reduces to

ds
dt

= β2s+(2γ − γ2)x̄ +(1− γ)γη0, (42)

dx̄
dt

= −b̄2s−β1x̄. (43)

Note that in Theorem 8 we may calculate the explicit solution
of the SCE equation system under the assumptionQΓ ≥
0 (see [12] for detail), which translates toγ ∈ [0,2] for
the scalar model. The calculation here does not need that
assumption. The related analysis will reveal a fundamental
difference between the SCE and NCE equation systems.

The NCE equation system (38)-(40) reduces to

ds†

dt
= β2s† + γ x̄† + γη0, (44)

dx̄†

dt
= −b̄2s†−β1x̄†. (45)

For further analysis of (44)-(45), we introduce

β2s†(∞)+ γ x̄†(∞) = −γη0, (46)

b̄2s†(∞)+ β1x̄†(∞) = 0. (47)

The notation s†(∞), x̄†(∞) is only for constructing the
algebraic equations. It does not necessarily mean ¯x†(∞) =
limt→∞ x̄†(t). Denote

∆ = β1β2− b̄2(2γ − γ2) = ā2 +(1− γ)2b̄2−ρ2/4,

∆† = β1β2− b̄2γ = ā2 +(1− γ)b̄2−ρ2/4.

Note that∆† = 0 if γ = γ†
1 = 1+ ā2/b̄2−ρ2/(4b̄2). Further

denoteγ†
2 = 1+ ā2/b̄2.

We study the solvability of the two equation systems (42)-
(43) and (44)-(45) in terms of the interaction parameterγ
such that each function is withinCρ/2([0,∞),R).

Theorem 9: [12] SupposeB 6= 0.
i) If γ 6= 1 and ∆ 6= 0, (42)-(43) has a unique solution

(s, x̄) ∈Cρ/2([0,∞),R2) for any x̄(0).
ii) If γ 6= γ†

1 , (46)-(47) has a unique solution
(s†(∞), x̄†(∞)). If

γ ∈ (−∞, γ†
1)∪ (γ†

1, γ†
2), (48)

(44)-(45) has a unique solution(s, x̄) ∈ Cρ/2([0,∞),R2)

for any x̄(0). If γ ≥ γ†
2 , (44)-(45) has a unique solution

(s†(t), x̄†(t)) ≡ (s†(∞), x̄†(∞)) within Cρ/2([0,∞),R2) when
x̄†(0) coincides with ¯x†(∞), and otherwise there is no solu-
tion in such a function class. �

Remark: To simplify the calculation, letx(0) = 0 and
η0 6= 0. We may use the solution of the NCE equation
system to explicitly compute the individual cost in the
population limit, and further show a cost blow-up effect.
Namely, when γ approachesγ†

1 from both sides orγ†
2

from the left side, the associated individual cost approaches
infinity. However, for the socially optimal solution, there is
no blow-up effect for the asymptotic average social optimum
limN→∞(1/N) infu J(N)

soc|x(0)=0 asγ approachesγ†
1 or γ†

2 . ♦
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Remark: Note that if B 6= 0, γ 6= 1 and ∆ 6= 0, we may
explicitly computes in the SCE based control lawui =
−R−1B(Πxi + s) for agenti, which leads to

dxi = (A− b̄2Π)xidt − b̄2sdt + DdWi. (49)

In fact (49) coincides with the limiting dynamics (25) of the
centralized optimal control problem since we may verify that
Π = p∞ and b̄2s = h and (49) and (25) have the same initial
condition. ♦

VI. T HE ASYMPTOTIC SOCIAL OPTIMUM

Now we give a closed form expression of the asymptotic
social optimum whenN → ∞ in terms of the solution of the
SCE equation system. Denote the ODE

ρqθ =
dqθ
dt

− sT
θ BR−1BT sθ +Tr(DT Πθ D), θ ∈ Θ.

By Lemma 11 there exists a uniqueqθ (0) such that the
resulting solutionqθ ∈Cρ([0,∞),R).

Theorem 10: [12] Assume that (A1)-(A5) hold and that
{xi,1 ≤ i ≤ N} have the same initial meanm0 and initial
covarianceΣ0 = Cov(xi(0)). The asymptotic average social
optimum is given by

lim
N→∞

inf
u

(1/N)J(N)
soc

= mT
0

[∫
Πθ dF(θ )

]
m0 +2mT

0

∫
sθ (0)dF(θ )

+Tr

[
Σ0

∫
Πθ dF(θ )

]
+

∫
qθ (0)dF(θ )

+

∫ ∞

0
e−ρt x̄T (QΓ+ ΓT Q−ΓT QΓ)x̄dt +(1/ρ)ηT Qη .

�

Remark: If we specialize Theorem 10 to uniform agents
with scalar states and ifB 6= 0, γ 6= 1, ∆ 6= 0, the asymp-
totic average social optimum may be evaluated using the
expression of(s, x̄) in Theorem 9. By lengthy but elemen-
tary calculation, we may further verify that this expression
coincides with (23). ♦

VII. C ONCLUSIONS

This paper develops the social certainty equivalence ap-
proach for asymptotically achieving the social optima in
mean field decision models. In this solution scheme, each
agent only needs to know the empirical distribution of the
dynamic parameters across the population to solve an ODE
system off-line and then uses its own state to construct a
feedback strategy.

APPENDIX A: THE OPTIMAL CONTROL LEMMA

Let (Ω,F ,(Ft )t≥0,P) be an underlying filtration. Con-
sider the controlled SDE

dx(t) = Ax(t)dt + Bu(t)dt + f (t)dt + DdW(t), t ≥ 0,
(50)

wherex(t) ∈ R
n, u(t) ∈ R

n1, f ∈Cρ/2([0,∞),Rn), andW (t)
is an n2 dimensional standard Brownian motion adapted to
Ft . The initial conditionx(0) is independent ofW (t) and

E|x(0)|2 < ∞. The admissible control setU consists of all
controlsu(·) adapted toFt with

∫ ∞
0 e−ρt |u(t)|2dt < ∞. For

u(·) ∈ U , let the cost function be given by

J(u(·)) = E
∫ ∞

0
e−ρt [xT (t)Qx(t)−2gT(t)x(t)+ uT (t)Ru(t)

]
dt,

(51)

where ρ > 0, Q ≥ 0, R > 0 and g ∈ Cρ/2([0,∞),Rn). The
matricesA, B, D, Q and R have compatible dimensions.
Denote the ARE

ρΠ = ΠA + AT Π−ΠBR−1BT Π + Q. (52)

Denote the ODEs

ρs =
ds
dt

+(AT −ΠBR−1BT )s+ Π f −g, t ≥ 0, (53)

ρq =
dq
dt

− sT BR−1BT s+2 f T s+Tr(DT ΠD), (54)

wheres and q are to be sought withinCρ/2([0,∞),Rn) and
Cρ([0,∞),Rn), respectively. The initial conditionss(0) and
q(0) are not pre-specified.

Lemma 11: For the optimal control problem (50)-(51),
assume (i) the pair[Q1/2,A− (ρ/2)I] is detectable and (52)
has a solutionΠ ≥ 0 such thatA − BR−1BT Π − (ρ/2)I
is asymptotically stable, and (ii) bothf and g are in
Cρ/2([0,∞),Rn). Then we have

(a) there exists a unique solutions ∈ Cρ/2([0,∞),Rn) to
(53);

(b) the optimal control law is given by ˆu(t) =
−R−1BT [Πx(t)+ s(t)];

(c) there exists a unique solutionq∈Cρ([0,∞),R) to (54).
The optimal cost is given by

inf
u∈U

J(u) = J(û) = E[xT (0)Πx(0)]+2sT (0)Ex(0)+ q(0).

Proof: We may show part (a) using the method in [8,
Lemma A.2]. We prove part (b) by first obtaining a prior
integral estimate ofx (see (56)) and then using a completion
of squares technique. Compared with [8], the cost integrand
in (51) does not necessarily allow rewriting the termxT Qx−
2gT x in the form(x−g1)

T Q(x−g1)+h1 for some functions
g1 andh1. For u ∈ U , we show that the prior upper bound

J(u) ≤C0 (55)

for some constantC0 implies

E
∫ ∞

0
e−ρt |x|2dt < ∞, (56)

where x is associated with u. We have 2|gT x| ≤
2
√

gT g
√

xT x ≤ (1/ε)gT g + εxT x for any ε > 0. Hence (55)
leads toE

∫ ∞
0 e−ρt [xT Qx− (1/ε)gT g− εxT x]dt ≤ C0, which

implies

E
∫ ∞

0
e−ρt(xT Qx− εxT x)dt ≤C1. (57)

If necessary, we may apply a nonsingular linear transfor-
mation. Here without loss of generality we simply assume
A = Diag[A11,A22], where all eigenvalues ofA11 (resp.,A22)
have a real part greater than or equal to (resp., less than)
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ρ/2. Write x = [xT
1 ,xT

2 ]T , wherex1 andx2 corresponds to the
sub-matricesA11 andA22, respectively, in the dynamics. We
write Q1/2 = [M1,M2] so thatxT Qx = |M1x1+M2x2|2, where
[M1,A11] is observable due to the detectability of[Q1/2,A−
(ρ/2)I]. By [8, Lemma A.1] andE

∫ ∞
0 e−ρtuT Rudt ≤ C0,

it follows that E
∫ ∞

0 e−ρt |x2|2dt < ∞, which combined with
(57) implies E

∫ ∞
0 e−ρt(xT

1 MT
1 M1x1 − ε|x1|2)dt < ∞. By the

observability of [M1,A11], we may further show that there
exist fixedc1 > 0 andc2 > 0, both independent ofε, such that
E

∫ ∞
0 e−ρtxT

1 MT
1 M1x1dt ≥ c1E

∫ ∞
0 e−ρt |x1|2dt−c2 (see [8] for

a similar argument). HenceE
∫ ∞

0 e−ρt(c1− ε)E|x1|2dt < ∞.
By taking a sufficiently smallε such thatc1 − ε > 0, (56)
follows. The rest part of the proof of part (b) is similar to
[8, Lemma A.2] and is omitted.

We prove (c) as follows. Let the initial condition of (54)
be q(0) to give

q(t) = eρtq(0)

+ eρt
∫ t

0
e−ρτ(sT BR−1BT s−2 f T s−Tr(DT ΠD))dτ.

We can show thatq ∈Cρ ([0,∞),R) if and only if

q(0) =

∫ ∞

0
e−ρτ(2 f T s+Tr(DT ΠD)− sT BR−1BT s)dτ

= (1/ρ)Tr(DT ΠD)+

∫ ∞

0
e−ρτ(2 f T s− sT BR−1BT s)dτ,

(58)

where the integral converges. Next, we apply Ito’s formula to
e−ρt [x(t)T Πx(t)+2s(t)T x(t)+q(t)] to obtain the expression
of J(û), wherex is the closed-loop solution under ˆu. �

Remark: If f andg are constant vectors, we may obtain the
unique solutions to (53) and (54) with the required growth
conditions as two constantss andq, satisfying

ρs = (AT −ΠBR−1BT )s+ Π f −g,

ρq = 2 f T s− sT BR−1BT s+Tr(DT ΠD).
♦
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contrôle optimal,C. R. Acad. Sci. Paris, Ser. I, vol. 343, pp. 679-684,
2006.

[22] J.-M. Lasry and P.-L. Lions. Mean field games.Japan. J. Math., vol.
2, no. 1, pp. 229-260, 2007.

[23] T. Li and J. F. Zhang. Asymptotically optimal decentralized control
for large population stochastic multiagent systems.IEEE Trans. Auto.
Control, vol. 53, no. 7, pp. 1643-1660, 2008.

[24] G. Owen.Game Theory, 3rd ed., Academic Press, San Diego, 1995.
[25] E. D. Sontag.Mathematical Control Theory, Springer-Verlag, New

York, 1990.
[26] H. Tembine, J.-V. Le Boudec, R. El-Azouzi, and E. Altman. Mean field

asymptotics of Markov decision evolutionary games and teams.Proc.
International Conference on Game Theory for Networks, Istanbul,
Turkey, pp. 140-150, May 2009.

[27] P. R. de Waal and J. H. van Schuppen. A class of team problems with
discrete action spaces: optimality conditions based on multimodularity.
SIAM J. Control Optim., vol. 38, no. 3, pp. 875-892, 2000.

[28] G. Y. Weintraub, C. L. Benkard, and B. Van Roy. Oblivious equi-
librium: a mean field approximation for large-scale dynamic games,
Advances in Neural Information Processing Systems, MIT Press, 2005.

[29] G. Y. Weintraub, C. L. Benkard, and B. Van Roy. Markov perfect
industry dynamics with many firms.Econometrica, vol. 76, no. 6, pp.
1375-1411, Nov. 2008.

[30] W. M. Wonham. Linear Multivariable Control: A Geometric Ap-
proach, 2nd ed., Springer-Verlag, New York, 1979.

[31] D. W. K. Yeung and L. A. Petrosyan.Cooperative Stochastic Differ-
ential Games, Springer, New York, 2006.

[32] H. Ying, P. G. Mehta, S. P. Meyn, and U. V. Shanbhag. Synchro-
nization of coupled oscillators is a game.Proc. American Control
Conference, Baltimore, MD, June 2010.

M. Huang et al. • Social Certainty Equivalence in Mean Field LQG Control: Social, Nash and Centralized Strategies 

1532




