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Social Certainty Equivalence in Mean Field LQG Control: Social, Nash
and Centralized Strategies

Minyi Huang Peter E. Caines Roland P. Malhamé

Abstract—We study social decision problems and Nash oblivious equilibria (OE) for games on industry dynamics,
games for a class of linear-quadratic-Gaussian (LQG) models and OEs with unbounded costs were analyzed in [1]. The
with N decision makers possessing different dynamics. For works [20], [21], [22] adopted a similar consistency based
the social decision case, the basic objective is to minimize ’ ’ ) e )
a social cost as the sum ofN individual costs containing a_pproagh fo.r mean field ggmes, but for ea(_:h f'n'.te population
mean field coupling, and the exact social optimum requires Siz€ a simplifying assumption was used stipulating that each
centralized information. Continuing from the previous work  agent’s strategy depends only on its own driving Brownian
(Huang, Caines, and Malhang, 2009 Allerton Conference), we motion. In [23], the interaction-consistency based approach
develop decentralized cooperative optimization so that each was applied to models with long term average costs. A
agent only uses its own state and a function which can be . ) :
computed off-line. We prove asymptotic social optimality results game theoretic framevyork Was_ proposed in [32] for .the
with general vector individual states and continuum dynamic control of coupled nonlinear oscillators, and the mean field
parameters. In finding the asymptotic social optimum, a key approximation approach was applied to obtain decentralized
step is to let each agent optimize a new cost as the sum of its strategies and further study phase transition of the closed-
own cost and another component capturing its social impact loop system.

on all other agents. We also discuss the relationship between The above game theoretic solution framework is based on
the socially optimal solution and the so-called Nash Certainty ] SR . .
Equivalence (NCE) based solution presented in previous work the assumption that these agents are individually incentive
on mean field LQG games, and for the NCE case we illustrate a driven and noncooperative. In [11], within the mean field
cost blow-up effect due to the strength of interaction exceeding modeling we studied a different situation where the agents
a certain threshold. are cooperative and seek socially optimal decisions. We note
that the notion of social optima has long been a central
issue in decision problems with multiple agents, and Pareto
Mean field decision models have attracted extensive adptimality is well known as one approach for characterizing
tention due to their significance in many domains [3], [5]social optimality [2], [24]. The goal of this paper is to study
[61, [71, [9], [17], [18], [22], [26], [28]. In such models, a how the agents in a mean field LQG model should choose
distinctive feature is the interaction between any given agettieir strategies for optimizing a social objective in the social
and the average effect of the overall population of agents. becision setting, or optimizing individual objectives in a
the search for decentralized optimization paradigms, ganidash game setting. We generalize the preliminary analysis
theoretic solutions have been successfully developed by dift [11] which considered a finite number of classes of agents
ferent researchers [9], [10], [28], [29], [20], [21], [22], [23]; and proved social optimality results for uniform agents with
along this line, decentralized solutions may be obtained Igcalar states. For the social decision problem, we consider
identifying a consistency relationship between the individuaboth i) centralized strategies where each agent may use the
mass interaction such that in the population limit eacktate information of all agents and ii) decentralized strate-
individual optimally responds to the mass effect and thesgies where each agent only uses local information. Related
individual strategies also collectively produce the same massimerical comparison of the optimized costs between the
effect presumed in the first place [9], [10], [13], [14], [8]. Un-socially optimal solution and the NCE based game theoretic
der reasonable conditions we have shown the existence ogelution was provided in [19], where each agent assigns
mass effect satisfying such a fixed point property and provaronuniform cost coupling weights across the population.
that the resulting set of decentralized individual strategies Bor stochastic differential games, cooperation issues were
an asymptotic Nash equilibrium. This solution property haaddressed in [31] by extending concepts such as coalition
been designated as the Nash Certainty Equivalence (NC&fd Shapley value to dynamic models. But in general, this
principle [10], [15]. Closely related mean field approximatiorapproach will not lead to social optima.
approaches were developed in [28], [29] using the notion of As a historical connection, it is worth briefly comparing
the current work with classical team decision problems,
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priori information but no real time information on otherabuse of notation sometimes we will write= (ug,...,un).

agents. The local forecast of the mean field effect is nowhe social cost is defined as

a part of the control problem. This leads to the development N N

of the Social Certainty Equivalence (SCE) methodology, I () = ZlJi(U())-

whereby the fundamental idea is to first quantify the social 1=

cost change due to the control perturbation of a givehe objective is for the agents to minimiagh,. To achieve

agent and subsequently apply mean field approximationgis, from the point of view of an individual’s control

We mention that a team formulation of mean field Markoelection, it is necessary to maintain a delicate balance in

decision with discount was developed in [26]. A fixedrequcing its own cost and also taking into account the social

point approach was used there to show the existence @fpact of such reductions (i.e., affecting the sum of the costs

an optimum when restricted to stationary strategies. Thisy 5| other agents).

approach ignores the transient behavior of the mean field For the large population system, a natural way for mod-

and may lead to optimality loss. eling the sequence of dynamic parametéfs..,6y is to
The Organization of the paper is as follows. The SOCia”WieW it as being Samp'ed from an under|ying parameter

optimal control problem is formulated in Section Il. Thegpace such that whel — «, the sequence exhibits certain

centralized solution is analyzed in Section Ill. Section IVstatistical properties; this is made precise by assumpfiah (

presents the SCE methodology and the asymptotic optimaligejow. However, we stipulate thdig,i > 1} is treated as

theorem. Section V analyzes the scalar case and providgjeterministic sequence. We assume that eacis in a

a comparison with the NCE equation system. Section Mompact se®® c RX. For a givenN, define the empirical
presents the explicit calculation of the asymptotic averag@stribution function

social optimum, and Section VIl concludes the paper.

1 N
PO ==S1 3
1. THE SOCIALLY OPTIMAL CONTROL PROBLEM N(®) Ni; {6<8) ®)
A. Dynamics and Costs where8 € R¥ and 6 < 6 holds componentwise for the two
Consider a system dfl agents. The dynamics of ageint Vectors. We make the assumptions. .
are given by the stochastic differential equation (SDE) (A1) There exists a distribution functidh(6) on R such

that Fy converges to- weakly, i.e., for any bounded and
dx = A(6)xdt +Buidt +DdW,  t>0. (1)  continuous functionp(8) on RX,

The underlaying filtration is (Q,f,(%)tzo,P), where lim [ ¢(8)dFN(6) = [ ¢(8)dF(6). o

(F)i=0 is a collection of non-decreasing-algebras. The (A2) The intial states{x(0),1 <i < N} are independent,

e g contoh v, espectyeln o, ensione 0 for i and il 1, s nre s
X X, 2SS N P Co < « independent o such that sup; E|x(0)|* < co. ¢

(02 ;
dent and measura_ble 0o, and E|_x. (0 < °°'_The noise (A3) A(0) is a continuous matrix function & € ©, where
processe§W, 1 <i < N} aren, dimensional independent O is a compact subset @~ o

standard Brownian mot_ions adapted#®, which are also in- (A4) For 6 € O, (i) the pair[A(8) — (p/2)1,B] is stabiliz-
dependent ofx(0),1 <i < N}. The constant matrice&(:),  _pia and (i) the paifQ¥/2,A(8) — (p/2)1] is detectable.>

B andD all have compatible dimensions. Hefledenotes a In the special case wr{e@: {L,...,K} for some finite
dynamic parameter associated with agenthe variability integerK, the empirical distributior’l oél,...,GN reduces to

of 6 is used to model a population of nonuniform agents, probability mass function 08, denoted ast™), and A1)
We only takeA() to be dependent o for the purpose reduces to the convergencemf) to a limit 7z. In addition,

of notational simplicity. When other matrix parameters fof A3y is trivially true under the discrete topology 6 where
agenti also depend o, the analysis is similar and will not an open set is the union of singletons or is the null set. Thus
be given in detail. For notational brevity the time argumen&A3) becomes redundant

for a processx, u;, etc.) is often suppressed when the value
of that process at timé is used. Denotex = [x],...,x{]"
andu=[ul,....uf]".

The individual cost for agerit 1 <i <N, is given by

It is possible to generalize our analysis to different initial
means as long a$Ex(0),i > 1} has a limiting empirical
distribution (see related discussions in [10]).

o ; B. Two Solutions Based on Different Information Patterns
) _ —ptf [y N . N . — :
J(u(-) —E'/O e {[x —e(x™)] Q[x — d(xV)] We will study two problems for optimizing\N according
T to different information patterns.
u' Ry }dt 2

U Rujt, ) Problem I-A — Find a social solution(uy,...,uy) with
whered(xN) = xN) + n andx™) = (1/N) N, x. We call ~ centralized information (SSCI), where eaghin a feedback
x(N) the mean field term. All the constant matrices or vectoform is a function of(t, xs, ..., xy) for attaining the minimum

I, Q>0,R> 0 andn have compatible dimensions. We useof Jéyg

u(-) (or u) to denote theN individual control processes, and Problem I-B — Find a social solutiorfu, ..., uy) with de-
also call it the control of the overall system. By a slightcentralized information (SSDI), where eaghin a feedback
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form is a function of(t,x). Note that when restricted to and xf'\i') = (1/N)z§-\‘¢i‘j:1>‘(j. For 1<i <N, let %, :=
decentralized information, the set of controls of thagents  {uj|ui(t, w) is adapted t0.%}. Givenu € %, defineu_; =
will not in general attain the same cost as in Problem I-A(u;,...,ui_1,Ui,1,...,Uy), andu’; is defined similarly.

Instead, a set of decentralized stratedias 1 <i <N} is Lemma 1: [11] Assume A4) and letx(0) be given. Sup-
sought such that the optimality loss with respect to Problerpjbse thatue %, attains the minimum oﬂéyg with the
I-A in minimizing JB! tends to zero whehl — oo admissible control se%,. Then 4 is the unique optimal

For comparison with our previous work, the followingcontrol for the control problem:
problem will also be reviewed. o _ _

Problem I — Find a competitive solutiofu, ..., uy) with (PO) dx; = A(8)xdt + Buidt + DdW, t=0. (4
decentralized information (CSDI), where ageistassociated Jio(ui) = Jgﬁg(al, oy Giog, Ui, Giga, ..., 0n),  (5)
with the costJ); and the objective is to obtain a setofNash whereJio(ui) is to be minimized withu & %, -

strategies suph that eadhis a functlon o_f(t,xi). . Let 4 be as in Lemma 1. Due to the coupling of the states
For a detailed account of this competitive solution frame- )

ork, the reader is referred to [10]. in Jso¢, Ui _in genergl will depend on awj, j=1,...,N. In
W I [10] the following we give a reformulation of Problem (PO).

I1l. THE CENTRALIZED SOLUTION Lemma 2: [11] Assume A4). In finding the optimal con-

Problem I-A leads to a standard LQG control problenif©! Ui € %i, Problem (PO) is equivalent to the optimal
and the optimal control lawty, ..., Gn) may be determined control problem:
from a high dimensional algebraic Riccati equation (ARE) (p1) dx; = A(8)xdt + Buidt + DdAW, t>0, (6)
if the standard stabilizability and detectability conditions 1 o JN)
are satisfied [30]. We first give a reinterpretation of each I (u) = E/o e PL0G,R5), ) (t)dt, )
individual component in(0,...,0y), which will motivate
the construction of decentralized strategies via a mean fi
approximation argument. The analysis here is similar tp — ><1T[(| _r/N)TQ(| —I'/N)+(N—1)/N2I'TQI']>q
the person-by-person optimality characterization of team —2(F>”(£'}'> )0 = F/N)%

decision problems [16]. (N)
B 4 JN) TOry (TR
A, Centralized Optimal Control: Personby-person Opiral- 2{[1 = (1=1/N)FRL = (1= 1/N)n} QI +-u; F(eg.).

ity

To facilitate further analysis, denote . %’ =
g (x(0),Wi(s),... s), s<t) for t > 0, which is . _ . o
th(e ( a):alé;(eg)’ra zﬁun(e)r:’;\ted _by)((O) and the Brownian appearsin the form ofg’i‘). This feature is useful for finding
motions up to time t. Denote the control set a decentralized suboptimal contral in Section IV by a

. ) inicti iati (N)
Uy = {(uy,...,un)|ui(t,w) is adapted to.Z0,¥i}, where deterministic approximation of’;".
w € Q explicitly indicates the dependence %f on the B, Explicit Solutions: Uniform Agents with Scalar Sates
_ H a0_
sarr}[pltla. Ezdm a (ué,...,_uN) § % is C:l”e(:_ an/lt %daptedd For uniform agents with scalar individual statégg;) in
;:r:)ng) and may " N V|ev_\$] ?Sba_ uncl'op‘; ):( )than at 1) is denoted by the same numb&r To avoid triviality,
€ brownian motions without being related to the sta upposeB # 0. Without loss of generality, we s =1 in

i i i 0- . . . . - .
pr(zjcfessg(;). I-<r he d|st|.nct|oI:1 bﬁjtv;eemfi?t a?aptecrzl] controls (2). To quantify the interaction between an individual agent
and feedback strategies should be clear from the context., \y e mean field, we introduce the parametrization

Given x(0), a very important observation for Prob-
lem I-A is that any feedback control lawu(t,x) = F=y, n=yno, 9)
(us(t,x),...,un(t,x)), if continuous in(t,x) and Lipschitz
continuous irx (thus ensuring a unique strong solution to th
closed-loop system), naturally induces a procesg0or),

ewpereJil(ui) is to be minimized withu; € %, and

O
Lemma 2 shows that all other agents’ effect ﬂﬁ{ui)

wherey is a parameter angy is fixed. Sol" andn are scaled
%y the same parametgr If we apply the parametrization (9)

i = to the original mean field model (1)-(2), a larggmeans
denoted asi(t, w) which belongs t07. This is due to the stronger interaction betweenandx™ & no. Now ®(xN)) =

fact that we may express the close_d—loop solutkdt) in y(x™N) + o). Denotely = [1,...,1]T consisting ofN ones.
terms ofx(0) and the Brownian motions. Note that under, . . N) .
y rearranging the integrand 9Ebl, we write

the stabilizability and detectability conditions, the optimaP -
control law is a linear feedback control law, indeed satisfying 3{N) _ E/ e P{(x" Qx+ 2Gx+ Ru'u+ Ny?nd)dt, (10)
the above continuity assumptions; the reader is referred to 0

[4], [30], [8] for detail. The benefit of introducing the control whereG = yno(y — 1)1, andQ is given in the form
set%, is that one can fix the controls of other agents while

allowing a selected agent to perturb its control. a p - B

Let the optimal control minimizinglh! be denoted by 6= B oa - P (11)
0= (0y,...,0n), which is now interpreted as a control from : RPN
Y. Let % correspond tou” Denotex™ = (1/N) 3, % B B - a
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anda = (1- %)24— (N—?\éﬁ =1+ %’ B= %’ =a—1. Under the conditior® > 0, solving (17)-(18) yields

The eigenvalues o@ are given b _ — _
? ’ d 7a+\/az+b2+\/az+(1—y)2b2—\/32+b2 19
M=a+(N-1)B=(1-y% A=..=MA=a-B=1 P77 N2 !
A similar LQG control problem was briefly analyzed in [10], \/32 F(1-yD —\/R+B
where the coupling term in agems costJ is ®'(x) = ON = NG ’ (20)

Y(1/N i X+ no) instead of®(xN)) and where the social
costisd = yN , J. A very subtle difference between the two
formulations is that given any, the pair[Q¥/2, (A—p/2)I\]

where the subscript ipy andqy indicates their dependence
on N. Furthermore, we obtain

in [10] is always observable for all sufficiently larfye where s = yoly—1) IN=": 31111[\—1, (21)
Q appears in the quadratic teshQ'x in J', while this is not (p/2)+ /@ +(1— y)252

the case whenb is used. As it turns out, whe® is used
andy =1, spafly} is always an unobservable subspac . ) .
for the system so that the state vector's component within Proposition 3: [11] If y # 1, then the pair [(A -

- - A 2)In,Bln] is controllable, the paifQY/2, (A—p/2)I\] is
spar{1n} is not penalized by the cost. To minimize (10), wep/ ’ . ’ .
set a deterministic initial conditior(0) = z and write the observable, and (13) has a unique solutr 0 given by

é(vhich does not depend dx.

. . (16) and (19)-(20). O
optimal costv in the form Let u* = (uj,...,uy) be the optimal control law. Then
V(2) =7 Pz+2s] 2+ 5. (12) U= -BR'pnx —BR v Y % —BR 'su, (22

K#I

Invoking the standard results of LQG control [4], [8], [25],Wheresll is defined in (21). Define
we have

. —lim o a+vaz+b?
2(A—p/2)P-B’R P?+Q=0, (13) P = lim py = ——5—.
ps1 = As; — B?RPs; + yno(y— 1)1, (14) Proposition 4: Assume y # 1 and @2) holds with

Ex (0) = mp, Var(x(0)) = o¢ for all i. Then the optimal

_ _p2p-1d0 2 2
pso=—B’R's{s + D*Tr(P) +Nyng, (15) social cost per agent wheth — oo is

which results inP € RN*N of the form

_ _ a+/a+(1—y)2?
Jim (1/N) inf 362 (u) = 0F po+ 11 u 7;2( L
g4 p - g +2mosy + (1/p) (D?pe + VPG —b7hy) . (23)
P=| . (16) O
d ] p We continue to examine the limiting dynamics of the

closed-loop system whel — co. It is sufficient to consider
We consider two cases. Ligt be theN x N identity matrix. @ given agent. By (22), agenhas the closed-loop dynamics
Case 1. y# 1 so thatA; > 0. Then clearlyQ > 0 and dx; = (A— b?pn)x;dt — b2on ;XJ dt — b?sy;dt + DAW.
the pair[Q2,(A— p/2)Iy] is observable, so that (13) has a i#
unique solutiorP > 0. (24)
Case 2: y=1 so thatA; = 0. Then [Q%,(A— p/2)In] is  Denote the ordinary differential equation (ODE)

not fully observable. By using an orthogonal transformation _ —1 -
W such that¥™ QW = Diag(Ai) = : A, from (13) we obtain dxc = [(P/Z) —ya+(1- V)zbz} Xcdt — bspadt,

Z(A_p/z)qﬂpq_,_ BZRfl(LPTPLP)Z_'_AA —o. wherexZ_(O) = E_>q (0) =my. It is easy to obtain the explicit
Q expression ok.. Denote

We restrict the entry of?’ PW at the first row and the first ht) = { /52+ (1—y)202 — \/m] %(t) + b1,

column to be zero, corresponding to the unobservable state
in the new coordinate system. Then we may find a unique

" . (N) _ N N
WTPY > 0 of rank N — 1, and subsequently finB > 0 to Proposition 5: Denotex (I/N)ZiZ1% in (24). As

sumey # 1 and lety; satisfy

(13). il
For simplicity, below we analyze Case 1 in detail. Substi- dyi = (A— b”pe)yidt — hdt + DdW, (25)
tuting P into (13) and denoting=A—p/2,b=B/VR we wherey;(0) = x(0). Let p € (0,p] be fixed such thatp —
obtain the following equations p)/2— /a2 + (1—y)22 < 0. Then
2ap - B [p?+ (N-1)g3 +a =0, (17) tsgope*f"{E|><<N>(t)—>z;(t)|2+|z|>q(t)—yi(t)|2} =0O(1/N).
_2 =
2aq—b°[2pq+ (N-2)g?]+ B =0. (18) 0
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IV. THE SoCIAL CERTAINTY EQUIVALENCE where xg(0) = my due to @A2) for the initial mean of all
METHODOLOGY AND DECENTRALIZED STRATEGIES agents, andsy is sought withinC, /»([0,),R"). The first
For integer k > 1 and real numbers > 0, define WO equatipns are pased on (29) and (31)_, and (34) is based
Cs([0,00),RK) consisting of allf € C([0,),RK) such that On interaction consistency, i.e., the mean field assumed at the
SUR-o|f(t)|e 9" < o for somed’ < 5. The parameted’ beginning should be replicated when averaging the individual

may change withf. closed-loop dynamics of a large number of agents. This
equation system will be referred to as the Social Certainty

A. The Mean Field Approximation Equivalence (SCE) equation system.
For large N, it is plausible to approximatex(l\iL> = In general, the existence and uniqueness analysis of a

(1/N)¥;4X%; in (8) by a deterministic functiorx. As an  solution to (32)-(34) may be developed using fixed point
approximation to Problem (P1), we construct the auxiliarynethods as in [10], [13] for NCE equation systems. After
optimal control problem: a solution is obtained, th&l agents in the social optimal

P2) dx — A(6)xdt -+ Buidlt -+ DAW, (26) control problem may determine their strategies by (30).

sy — B e P (e 1h
J (u|)—E/0 e 7L (;, u, X)dt, B. The Social Optimality Theorem

whereJ* is to be minimized and We state the assumption on the existence of a solution to
N : - : the SCE equation system.
L* (%, U, %) = X Qx — 2(7X+1)TQx _
A5) There exists a solutiofsg, Xg,X, 0 € ©) to the SCE
- nTorx+uTRy @7y B (9. % )

equation system (32)-(34) such that each component of
as an approximation df in (8). To ensure thai* is finite, (Ss,Xs,X), as a function of, is within C,»([0,»),R") and
we restrict thatx € C, /5([0, ), R"). such that bottsg andxg are continuous irg for each fixed

For 6 € ©, denote the ARE te|o, oo) O

pMg = MoAg +AbMg — MgBR BTMg + Q, (28) Let F(N) be the empirical distribution specified bjX).

Definegy > 0 by
whereAg := A(6). Under @4), (28) has a unique solution
Mg > 0. Denote the ODE 2 ot
d 8N - / e
dste + (A} —MgBRBT)sg
—1rro+or —rfomx+ (1 —r7 ’ 29 Lemma 6: [12] Suppose thatA1)-(A5) hold. LetxX; be the
(re+Q Q)X+ JQn) (29) closed-loop solution of agemtunder the SCE based control
which does not have a pre-specified initial condition. Inaw (30) andx™N) = (1/N)2i'\‘:l>“q, Then

fact, if xe Cp/2([0,0),R"), one may use the fact tha —
BR1B"My — (p/2)l is asymptotically stable to identify a /'°° pt (N 2 2
E/ ePxMN(t)—xt)]?dt <C(1/N+¢g
unique initial conditiorsg (0) provided thatsy(t) is required Jo X0 =xt)Fdt < C(L/N+ &),
to be withinC,, /»([0,%),R"); see [8, Lemma A.2] for related _
detail. where liny_» & = 0. O
Assume thai Fas been given. Following the method in  The asymptotic performance of the SCE based strategies
[4], [10], [14], [8], we may useA4) and Lemma 11 to show IS characterized by the central result below.
that if s € C, /5([0,),R") satisfies (29) after setting= 6, Theqrem 7: [12] Assume 0) 9_\1) (A3), (A4)-(i) and (A5)
the optimal control lawy;"for Problem (P2) is hold; (i) Q >0 andl —T is nonsingular. Then the set of SCE
- based control lawgG = —R BT (Mg & +5sg), 1 <i <N}
=—R7B (MgXi +3)- (30)  has asymptotic social optimality, i.e., far="(0y,...,0x),
The closed-loop dynam|cs take the form

dx = AgXdt —BR BT (MgXx +sg)dt+ DdW,  (31)

2
dt.

[Fot)dF ™ (8) - [ (t)dF(6)

psg =

[(1/N)3ad(@) — inf (1/N)Iad(w)] = O(1/ VN + &),

where the initial condition isq(0). _ ~ where%, is defined in Section Ill-A as a set of centralized
We construct the equation system with the dynamic papformation based controls. 0

rameter € © Note thatQ > 0 implies (4)-(ii). Hence it is ensured by

psg = d_se + (AT —MeBR1BT)s (A4)-(i) and (ii) that (28) has a _unique solu_ticb'rhg >0 and
dt a that A(8) —BR 1By — (p/2)l is asymptotically stable.
—[(MMQ+Qr —r'QN)x+(1-rNHQnj, (32 Note that for the scalar model with uniform agents and the
aXg B 1T parametrization (9), the requirement of a nonsingularm
gt~ PeXe —BRTB (Texo +5), (33)  educes toy # 1. The invertibility of | — I" is used for prior
T— / %odF (8), (34) integral g;timates of the state process provided that the social
cost is finite [12].

dXg
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C. Explicit Solutions with Uniform Agents A. Comparison of Solvability of the Two Equation Systems

For uniform agents (i.e.6 = 8 andA(6) = A), the SCE Now, the SCE equation system (32)-(34) reduces to
equation system (32)-(34) becomes

ds -
- D o = Bes+ (v V2)X+ (1 - y)yno, (42)
ot = (A-BRB'M)x—BR'B's (35) X = -
dt ) ) L o = DS piX (43)
gt = QX+ (pI —AT+MBRB s+, (36)

Note that in Theorem 8 we may calculate the explicit solution
where we denotélg =1, sy = s andxg = x by omitting the of the SCE equation system under the assump@pn>
subscript and 0 (see [12] for detall), which translates tpoe [0,2] for
the scalar model. The calculation here does not need that
Qr=r"Q+Qr-riQr, nr=(1-rHQn. (@7 assumption. The related analysis will reveal a fundamental
A solution (s,x) of (35)-(36) is said to be within difference between the SCE and NCE equation systems.
Cp/2([0,%), R?) if both s andXx are withinC, ([0, %), R"). The NCE equation system (38)-(40) reduces to

We have the following existence and uniqueness theorem. ds'

Theorem 8: [12] Suppose thatA4) holds for A(6) = A o Bos" + yx' + yno, (44)
and thatQr ="Q+Qr —r'Qr > 0. Then the equa- it 3
tion system (35)-(36) has a unique soluti¢s)x) within > _ —b?st — BixT. (45)
Co2([0,0), R2"). 0 at |

For further analysis of (44)-(45), we introduce

D. Connection with the NCE Equation System ‘ t

To compare with our past work on Problem I, we review [_525 (20) + X (20) = =¥, (46)
the NCE approach for the game problem when agénas- b?s" (e0) + B1X () = 0. (47)

sociated with cosl; (see e.g., [10]). To obtain decentralize
strategies, this approach proceeds as follows.

First, the representative agarapproximates the coupling
term I'xN) + 1 in (2) by a deterministic functiod X+ n B 3
and solves an optimal tracking problem. Next, the mean A= B8, —b%2y—y?) = a2+ (1— y)%0*— p?/4,
trajectoryEx; for the closed-loop of agemtis determined b + 2 =2 22
anJODE.)/FiﬁaIIy, the state averapge ofgall the individual ag};znts A =Pipp—bly=a"+ (1-y)b"—p7/4.
shall replicatex Tnitially assumed. This procedure leads toNote thatAt =0 if y= VI =1+a2/b? — p?/(4b?). Further

Urhe notations'(c), X'(e) is only for constructing the
algebraic equations. It does not necessarily megm) =
lim¢ . X' (t). Denote

the NCE equation system denotey] = 1+a2/b?.
ds’ We study the solvability of the two equation systems (42)-
psg = d_te + (AT — I'IgBRleT)sL — Q(I’)?T+ n, (38) (43) and (44)-(45) in terms of the interaction parameter

such that each function is withi@, ([0,),R).
20 Aefg _ BR’lBT(I'Igfg +s£), ;{5(0) =mo, (39) Theorem 9: [12] SupposeB # 0.

d i) If y#1 andA # 0, (42)-(43) has a unique solution
it — /i{,dF(e). (40)  (s%) & C,)5([0, ), R?) for anyX(0).

iy If y#£ yI, (46)-(47) has a wunique solution
The superscript iffs)), x5, x") distinguishes the solution from (s (e), X" (c0)). If
that of the SCE equation system. The set of strategies N P
ye(=», y)Un, %), (48)

. o ~ (44)-(45) has a unique solutiois,X) € Cp/2([0,),R?)
is an&-Nash equilibrium [10]. The NCE and SCE equatiorfor any x{0). If y > y!, (44)-(45) has a unique solution

u=-BRMgx+s)), 1<i<N (41)

systems differ by a different equation fsgf. (st(t),x"(t)) = (sT(oo)jo(oo)) within Cy([0, ), R2) when
V. THE SCALAR MODEL WITH UNIFORM AGENTS x'(0) coincides withx'{e), and otherwise there is no solu-
tion in such a function class. O

Recall that for the scalar model, we §@t=1 and assume  Rorark: To simplify the calculation, letx(0) = 0 and
B +# 0, and that™ andn_ are parametrized according to (9).,.’0 £ 0. We may use the solution of the NCE equation
Let M > 0 be the solution to the ARE system to explicitty compute the individual cost in the

pM = 2AM — B2R N2+ 1. population limit, and further sThow a cost blpw-up ef{ect.
Namely, wheny approachesy; from both sides ory,

Let B1=—A+B?R M andB, = —A+B?R M+p. Follow-  from the left side, the associated individual cost approaches
ing the notation in Section I1I-B, denote=A—p/2, b= infinity. However, for the socially optimal solution, there is
B/vR We haveB; = —(p/2) +Va+b2and B, = (p/2)+ no blow-up effect for the asymptotic average social optimum
Vaz+b2 limN—e(1/N) infuJ§§2|X(o):0 asy approache:yir or y;r. O
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Remark: Note that ifB# 0, y# 1 andA # 0, we may E|x(0)|? < . The admissible control se¥ consists of all

explicitly computes in the SCE based control law; = controlsu(-) adapted to% with [5° e P|u(t)|?dt < . For
—R~1B(Mx + ) for agenti, which leads to u(-) € Z, let the cost function be given by
2 2 o
dx = (A— b H)Xidt — bfsdt + DdW. (49) J(U()) — E/ g Pt [XT(t)QX(t) _ ZgT(t)X(t) —l—UT(t)RU(t)} dt,
In fact (49) coincides with the limiting dynamics (25) of the ° (51)

centralized optimal control problem since we may verify that n

M = pe andb2s— h and (49) and (25) have the same initialVh€€ P >0, Q >0, R> 0 andg € C,5([0,),R"). The

condition. matricesA, B, D, Q and R have compatible dimensions.
Denote the ARE

VI. THE ASYMPTOTIC SOCIAL OPTIMUM - 10T
: : . pMN=MNA+A'N-NBR B N+Q. (52)
Now we give a closed form expression of the asymptotic

social optimum whemN — oo in terms of the solution of the Denote the ODEs

SCE equation system. Denote the ODE ds
d ps:aﬂAT—nBR*lBT)ernf—g, t>0, (53)

pPde = S _ shBR 1B sy + Tr(D'MgD), 0cO. dg
dt pq= — —s'BR1BTs+2fTs+ Tr(D'MD), (54)

By Lemma 11 there exists a unigqug(0) such that the dt
resulting solutiongg € C, ([0, ), R). wheres andq are to be sought withilC, ([0,),R") and

Theorem 10: [12] Assume that £1)-(A5) hold and that C,([0,),R"), respectively. The initial conditions(0) and
{%,1 <i < N} have the same initial meamy and initial g(0) are not pre-specified.
covarianceZy = Cov(x (0)). The asymptotic average social Lemma 11: For the optimal control problem (50)-(51),
optimum is given by assume (i) the pailQ¥/?,A— (p/2)!] is detectable and (52)
has a solutionl > 0 such thatA — BR BN — (p/2)I

i (N)
Jim inf(1/N)Jsoc is asymptotically stable, and (i) botd and g are in

07 T Cp/2([0,%0),R"). Then we have
= my U I'Ing(G)] Mo + 2 /se(O)dF(G) (a) there exists a unique solutiane C, 5([0,0),R") to
: - (53);
T [zo / nng(e)} + / do(0)dF (6) (b) the optimal control law is given byu(t) =
L —RIBT[Mx(t) +s(t)];
+/ e P (Qr+r'Q—-rrQrxdt+ (1/p)n"Qn. (c) there exists a unique solutiare C, ([0, ), R) to (54).
0

The optimal cost is given by

O

Remark: If we specialize Theorem 10 to uniform agents U'Q;/J(U) =J(0) = E[x" (0)1(0)] +2s" (0)Ex(0) +(0).
with scalar states and B # 0, y # 1, A # 0, the asymp- Proof: We may show part (a) using the method in [8,
totic average social optimum may be evaluated using tHeemma A.2]. We prove part (b) by first obtaining a prior
expression of(s,x) in Theorem 9. By lengthy but elemen- integral estimate ok (see (56)) and then using a completion
tary calculation, we may further verify that this expressiorf squares technique. Compared with [8], the cost integrand
coincides with (23). ¢ in (51) does not necessarily allow rewriting the texhQx —
2g"x in the form (x—g1)" Q(x— g1) + hy for some functions

01 andh;. Foru e %, we show that the prior upper bound
This paper develops the social certainty equivalence ap-

proach for asymptotically achieving the social optima in Ju) <G (55)
mean field decision models. In this solution scheme, eacFBr some constan implies
agent only needs to know the empirical distribution of the

VII. CONCLUSIONS

dynamic parameters across the population to solve an ODE E/00 e Pt|x|2dt < oo, (56)
system off-line and then uses its own state to construct a 0
feedback strategy. where x is associated withu. We have Z'x| <

2\/gTgvxTx < (1/€)g" g+ exx for any € > 0. Hence (55)
leads toE [5’e P [x"Qx— (1/€)g"g — ex"x|dt < Co, which
implies

APPENDIXA: THE OPTIMAL CONTROL LEMMA
Let (Q,%#,(% )i>0,P) be an underlying filtration. Con-
sider the controlled SDE .
—pt T T
dx(t) = Ax(t)dt + Bu(t)dt + f (t)dt + DAW(t),  t >0, E/O e P (X" Qx—ex'x)dt < Cy. (57)

(50) If necessary, we may apply a nonsingular linear transfor-
wherex(t) € R", u(t) e R™, f € C,/»([0,),R"), andW(t) mation. Here without loss of generality we simply assume
is anny dimensional standard Brownian motion adapted té\ = Diag[A11,Az2], where all eigenvalues @1 (resp.,A22)

. The initial conditionx(0) is independent ofV(t) and have a real part greater than or equal to (resp., less than)
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p/2. Writex = [x] ,x}]T, wherex; andx, corresponds to the [11]

sub-matriceg\;1 and Ay,, respectively, in the dynamics. We
write QY2 = [My,My] so thatx” Qx = [M1x1 + Mzx|?, where
[M1,Aq1] is observable due to the detectability [GF/2 A—
(p/2)1]. By [8, Lemma A.1] andE [y e P'u'Rudt < Cy,
it follows that E [;° € P![x;|?dt < e, which combined with
(57) impliesE J5" e Pt (x] M{ Myx; — €[x1|?)dt < 0. By the
observability of[M1,A;1], we may further show that there [14]
exist fixedc; > 0 andc, > 0, both independent @&f, such that
E Jo e Px] M] Myxqdt > ¢1E [ e P|xq|2dt — ¢, (see [8] for
a similar argument). HencE [;° e P'(c; — €)E|xy|?dt < oo.
By taking a sufficiently smalk such thatc; — € > 0, (56)
follows. The rest part of the proof of part (b) is similar to
[8, Lemma A.2] and is omitted. (16]
We prove (c) as follows. Let the initial condition of (54) [17]
be q(0) to give

q(t) = €”q(0)

[12]

[13]

[15]

Lt /Ot e PT(sTBR1BTs— 2fTs— Tr(D'MD))dr. E:
We can show that| € C,([0,),R) if and only if
q(0) = /0 " e PT(2fTs4+ Tr(DTMD) — ' BR BT s)dr [20]
=(1/p)Tr(D'MD) + /O ’ e PT(2fTs—s'BR 'BTs)dr, o

(58)

where the integral converges. Next, we apply Ito’s formula t&2!

e PUx(t) TMx(t) + 2s(t) Tx(t) +q(t)] to obtain the expression [p3

of J(0), wherex is the closed-loop solution under =~ [
Remark: If f andg are constant vectors, we may obtain th

unigue solutions to (53) and (54) with the required growt o

5]
conditions as two constanssandq, satisfying
[26]
ps= (AT —MBR!BM)s+Mf—g,
pgq=2fTs—s'BR 1B"s+Tr(D'MD). <
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