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Observers for DPS back and forth in time

George Weiss, Karim Ramdani and Marius Tucshak

Abstract—Let A be the generator of a strongly continuous observability), then we can use a numerical solver to im-
semigroup T on the Hilbert space X, and let C' be a linear  plement anobserverfor the DPS in order to estimate its
operator from D(A) to another Hilbert space Y (possibly ¢, rent state from the measured inputs and outputs of the

unbounded with respect to X, not necessarily admissible). We t Section Il for details). Th timate i
consider the problem of estimating the initial statezo € D(A) system (see Section Il for details). The estimate improves as

(with respect to the norm of X) from the output function y(t) = time goes by, more precisely, the estimation error tends to
CT:z0, given for all ¢ in a bounded interval [0, 7]. We introduce  zero as time goes to infinity. From the final state we can, in
the concepts of estimatability and backward estimatability for  principle, recover the initial state if the dynamics are time

(4,0) (in a more general way than currently available in o arsible. However, this may increase the estimation error

the literature), we introduce forward and backward observers, d ti d th | .
and we provide an iterative algorithm for estimating z, from  &nd MOreover, someumes we do not have a very long (in

y. This algorithm generalizes various algorithms proposed time) segment of output data to operate on.
recently for specific classes of systems and it is an attractive The purpose of this paper is to describe a way in which

alternative to methods based on inverting the Gramian. Our - - . .
results lead also to a very general formulation of Russell's we can estimate the initial state of a linear DPS by operating

principle, i.e., estimatability and backward estimatability imply ~ Only on a finite segment of output data. In short, the idea is to
exact observability. This general formulation of the principle scan the same segment of data back and forth several times,

does not require T to be invertible. using two observers, one working in forward time, and one
in backward time. This idea has appeared in the recent papers
[. INTRODUCTION [3], [4] where the method has been mathematically justified

1f8r finite-dimensional linear systems with full observation

In many areas of science and engineering it is important . . ) ;
nd it has been numerically investigated for more general

estimate the initial (or the final) state of a linear distributed"® " . . 4
parameter system (DPS) from its input and output functioriituations (in particular nonlinear systems)_. A related work
measured over some finite time interval. In oceanograp Phung and Zhang [21] where, based_on t|_me rev_er_s_al meth-
and meteorology this problem is callethta assimilation ds, th? authors develop a methqd to_ |d(_ant|fy the initial ;tate
for a Kirchhoff plate equations with distributed observation.

see for example Auroux and Blum [3], [4], Le Dimet etTh lqorithm in this last be sh tob valent
al [19], Teng et al [27] or Zou et al [33]. Such a problem € algorithm In this fast paper can be shown to be equivalen

also arises in the context of medical imagingimpedance- to a particular case of the algorithm presented in this paper

acoustic tomography; see for instance Gebauer and Scher&%?le dR%tr)narlI: 3'1; tf:)elt?]w). I(r; [.3]’ ,,[4] Lhe algo_rithrglha_? lqueen
[9] and the review paper by Kuchment and Kunyansky [17]§a € ack and forth nudging” whereas in [21] it has

The estimation of the initial state can also be regarded Q en called “time Feversa' focusing”. An abStra.Ct formulation
the main step in solving inverse source problems, see A&z @ related algorithm, .swtable for skew-adjoint g_energtors
et al [1]. An infinite-dimensional system is calleskactly and bounded observation operators, has been given in Ito,

observable in time- if the problem of estimating the initial Ramdani and Tucsnak [12].
state from data measured over a time interval of lengit Linear DPS often have unbounded control and/or obser-
well-posed (see Section Il for precise definitions). vation operators. This is often the consequence of boundary
Suppose now that we have an exactly observable lineg@ntrol and/or boundary observation (see [28] for an elemen-
DPS. The actual formula for expressing the initial state frorfary introduction to this topic). To make our basic ideas more
the measured segment of the input and output functio®&sily understandable, we give in this introductory section
involves inverting the Gramian operator of the system (se@, short presentation of the simple particular case when
for instance, Tucsnak and Weiss [28, Section 6.1]), and thiBe observation operator is bounded, the output injection
may be numerically very challenging. operators are also bounded and the semigroup is invertible
On the other hand, if we find stabilizing output injection (i-e., the observed system is time reversible). However, we

operator for the system (its existence follows from exacttmphasize that our results do not require the observation
and output injection operators to be bounded (not even
G. Weiss is with Department of Electrical Engineering-Systems, Tel Aviadmissible), and we also do not require the observed system
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M. Tucsnak is with Université Henri Poincaré .
(ECN), BP 70239, 54506 Vandoeuvre-les-Nancy, ~FrancdJ€nerator of a strongly continuous group of operatorston
Mari us. Tucsnak@ ecn. u- nancy. fr This group describes the (time reversible) dynamics of our

ISBN 978-963-311-370-7 1427



G. Weiss et al. « Observers for DPS Back and Forth in Time

system. The system is described by the equations Since the semigroups generatedAdy HC and—A+ H,C
are exponentially stable, far > 0 large enough, we have
2(t) = Az(), y(t) = Cz(t),

with an initial statez(0) € X, wherey is the output
function. We assume (in this simplified presentation) thafor suchr, repeating estimation cycles leads to a rapid
C € L(X,Y). The operatoC is called theobservation op- convergence of the estimation error to zero.
erator. We assume thatA, C) is estimatablewith bounded Notice that it follows from the above argument that under
injection, which means that there exists &hc L(Y,X) the stated assumptions (all the operators apart frbrare
such thatd + HC' generates an exponentially stable semibounded, estimatability and backward estimatability), the
group onX. In this case, we can construct abserverfor  original system is exactly observable. This is a dual version
our system as follows: the state of the observewiand it of Russell’s principlewhich was originally stated in Russell
satisfies the differential equation [23], [24] and has been used in many references, such as
. Komornik [13]. A rigorous and general statement and proof
w(t) = (A+ HC(t) — Hy(t), of the principle can be found in the little known conference
with an initial statew(0) € X. We refer to Curtain and Zwart Paper Rebarber and Weiss [22]. The precise statement of
[7] for a discussion of observers in this context. If we definé More general version of the dual Russell's principle (not
the estimation errorby e(t) = w(t) — (t), then it is clear confined to bounded operators and not requiring that the

(from subtracting the two differential equations) that semigroup is invertible) will be given in Proposition 3.3. An
even more general version will be given in Remark 3.5.

He(fAJerC)Te(A+HC)T <1

e(t) = (A+ HC)e(t
( ) ( ) ( )’ II. BACKGROUND ON ADMISSIBILITY, OBSERVABILITY

which shows thate — 0 exponentially, regardless of the AND OBSERVERS

initial states of the system and the observer. _ First we give some technical background about linear
Now suppose thafA, C) is backward estimatablevith  pps. More precisely, we recall some simple facts about
bounded injection, which means there exists Hp < admissibile observation and control operators, exact observ-
L(Y,X) such that—A + H,C is the generator of an gpjlity and estimatability. There is a large literature on
exponentially stable semigroup oX. In this case, we can admissibility and we refer to Chapter 5 of [28] for an
construct abackward observefor our system as follows: elementary introduction and for references and historical
the state of the observeris, and it satisfies the differential comments. Here we keep the discussion to the minimum that
equation is needed. The concept of estimatability is one of the infinite-
. A dimensional generalizations of the well-known concept of
wp(t) = (A = HyChuwp(t) + Hoy(t), detectability used in finite-dimensional control theory. It
with a final statew,(r) € X. This equation should be is much less w_ell—known t_han qdmissibility, and our basic
solved backward in timeon [0, 7], starting from the final reference for this concept is Weiss and Rebarber [31].

statewy, (7). If we define thebackward estimation erroby Let X and Y be Hilbert spaces and assume that:

es(t) = wy(t) — z(t), then from subtracting the differential P(A) — X is the generator of a strongly continuous semi-

equations we see that group T on X. We define the Hilbert spac&; = D(A),
with the norm

ép(t) = (A — HpQ)ep(t),
p(t) = ( sC)en(t) lzolls = (BT — A)z| Y zo € D(A),

which shows that ] ) )
where g is an arbitrary fixed element of the resolvent set

ep(0) = e(TATHOT e (7 p(A). Regardless of the choice df, the above norm is
equivalent to the graph norm.

We define oneestimation cycleas follows: with the data | gt ¢ L(X;,Y). For everyr > 0 we define the operator
y(t) given fort € [0, 7], we choose an initial state(0) for . x, — 12([0,7);Y) by

the observer and run it over the interyal 7], obtaining an
estimatew(r) for the unknown state (7). Puttingw,(7) = (Wr20)(t) = CTy20 Vtel0,7], 20 € D(A).
w(T), we run the backward observer to obtain an estima
wp(0) for the unknown state(0). The estimation error at
the end of such a cycle is

R?Ve call C an admissible observation operatdor T if

for some (hence, for every) > 0, ¥, has a continuous

extension toX, i.e., ¥, € L(X,L*([0,7];Y)). If this is

ep(0) = e("ATHO)T(A+HO)T o () the case, then there exists a unique continuous operator
U : X — L2 ([0,00),Y) such that for everyr > 0 and

If we run N estimation cycles§ € N) then the estimation », ¢ X, ¥, 2, is the restriction ofl z; to the intervall0, ].

error at the end will be The Laplace transform of = Wz is § = C(sI — A) "'z,

for all zo € X and for alls € C for which Rs is larger than

N
N - T T
e (0) = |eTATHCIT(ATHE) } e(0). the growth bound of.
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With X, A as above and’ € £(X;,Y), the pair(4,C) Note that in (2.2), botrd¥ 2 and HCz are in XX, but
is called exactly observable in time > 0 if there exists their difference is inX. The equation (2.2) can be rewritten
k. > 0 such that equivalently in weak form as follows:

/ |CTezo||2dt > k22012 V 20 € D(A). (Az, ¢)x = (2, (A%)*¢) — (Cz, H" ¢)y
0 VzeD(A), €D ((A%)*). (2.3)
The paw(A,_C) IS call_edexactly observablé it is exactly Remark 2.2:In the finite-dimensional control literature
observable In some time > 0. e as well as in the literature on DPS with bounded control
Note that in the above definition we have not assumeghq opservation operators, the property defined above is
thatC' is admissible. This is different from the terminology .5 jeqdetectability. When dealing with unbounded operators,
adopted in [28], where admissibility is a part of the definitionyetectapility has several (non-equivalent) generalizations. A
of exact observability (in time). more restrictive one has been given in Weiss and Curtain
Let X, be the completion o™ with respect to the norm [3q) \where there are additional assumptions, for example,
_ -1 A, H,C) has to be a regular triple. This more restrictive
lzoll—1 = (BT = A)~ 20| VaeX, (concept)is called detectability in [30]. The above definition
whereg is as before. This space may be regarded as the d@lestimatability is close to, but not equal to the one in [31].
of D(A*) with graph norm, with respect to the pivot spacdndeed, in [31]C is assumed to be admissible fér while
X. We haveX; ¢ X c X_;, densely and with continuous here we have dropped this requirement. Even for admissible
embeddings. The semigropcan be extended to a strongly C, the definition of estimatability in [31] looks different from
continuous semigroup acting oYi_;, whose generator is an the one given here, but they are equivalent, see Propositions
extension of4, having the domaitX . Notationally, we shall 3.3, 3.4 and 4.4 in [31].
not distinguish betweeffl' and its extension, or betweet Remark 2.3:1t is known (see [31, Section 1]) that &
and its extension. Let/ be another Hilbert space and letis admissible forT, then the exact observability of the pair
B € L(U,X_,). For everyr > 0 we define the operator (4,C) implies its estimatability.

®,: L*([0,7);U) — X_1 by Remark 2.4:Given A andC it is usually not a simple task
. to find a stabilizing output injection operatdf for them.
d,u = / T,_, Bu(o)do. Some approaches involve Riccati equations (see, for instance,
0 Lasiecka [18]), other approaches involve Gramians (see, for

example, Komornik [14] and Urquiza [29]). These methods
for determiningH are computationally expensive in general.
If A is skew-adjoint (or close to skew-adjoint) then often we
can choosé? = —C™*. Such anH is calledcolocated output
injection and it is dual to colocated state feedback. Colocated
state feedback has been studied a lot in the literature on
distributed parameter systems. Among the early papers we
mention Slemrod [25] and Haraux [11]. For the case of skew-
adjoint A and bounded” see our Proposition 3.7. Curtain
and Weiss [6] contains many further references on this topic
and it gives rather general sufficient conditions (h B)

for —B* to be a stabilizing state feedback operator. Ammari

. . . . . and Tucsnak [2] considered the case of second order systems
In fact, the functior: defined earlier is the unique solution Ofwithout damping.

the above integral equation that satisfies the initial condition The above definition of estimatability is clearly a gener-

Z((I)D) T “0- 2 1: Let A be th ¢ | alization of the one given in the Introduction for bounded
; efinition 2.1: Let Xe t 3 ??nceratﬁor)(() e;/str_lczﬂg Y CON- o heratora™ and H. It may seem very abstract, but it implies
inuous semigroufi’ on X and letC € £(Xy,Y). The pair o solvability of a reasonably natural final state estimation
(A, C) is estimatabldf the following conditions hold: problem:

i K . K
(1) There exists an operatod™ : D(A”)—X that = pronasition 2.5: Assume that the paitA, C) is estimat-
generates an exponentially stable semigr@ipon X. We able and lefT, AKX T*_H be as in Definition 2.1. Take, €
K : ) ) ) L.
denote byX™, the analogue of the spacE¥_; discussed D(A), let 2 € C([0,00); X,) be defined by:(t) = T,z and

i K
earlier, for the operaton™. . . . lety € C([0,00);Y) be defined byy = Cz. Letwy € X
(2) There existsH € L(Y,XZ) that is an admissible 5,4 et ¢ C(]0, 00); X) be the solution of

control operator fofT®, such that

We call B an admissible control operatdior T if for some
(hence, for everyy > 0, the range of®.. is contained in
X. If this is the case, thet. is bounded from?.%([0, 7]; U)
to X. If u € L2 ([0,00),U) then by ®,u we meand,
applied to the truncation af to [0, 7|. If B is admissible then
®,u is a continuousX -valued function. Moreover, for any
u € L} ([0,00),U) and anyz, € X, the functionz(t) =
Tz + ®,u satisfiesz(t) = Az(t) + Bu(t) in the sense that
it satisfies (for allr > 0) the integral equation

2(r) — 2(0) = /OT[Az(t)+Bu(t)]dt. 2.1)

w(t) = A%w(t) — Hy(t), w(0) =wo, (2.4)

Az = AKz — HCx Ve eD(A). (2.2) .
Following the finite-dimensional terminology, we cdil in the sense of (2.1). Then
as above atabilizing output injection operatdor (A, C). w(t) — z(t) = T (wo — 20) Vit>0. (2.5)
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In particular, there exish/ > 1, w > 0 such that same equation (2.5) as before. This shows that the map
(z0,wo,u) — w(r) (Which is obtained by combining the
observer with the system) can be extended by continuity to
a bounded operator frotd x X x L2([0, 7]; U) to X (without

z2(t) — zo = /Ot Az(€)de, (2.6) assumingC' to be admissible).

IIl. | TERATIONS USING FORWARD AND BACKWARD
OBSERVERS

lw(t) — z(t)]] < Me™“!||lwo — 20| Vit>0.
Proof. Clearly for allt > 0,

wherez and Az are continuousX -valued functions. The fact

thatw € C(]0, 00); X) satisfies (2.4) implies (see (2.1)) that . o ] )
for all t > 0, In order to estimate the initial state of a system iteratively

t t using output data from a finite time interval, we need the

w(t) —wo = / AKw(g)d¢ —/ Hy(¢)d¢.  (2.7) notion of backward estimatability defined below. In this

0 0 section (as in the previous ong andY denote Hilbert

In the above formula the two terms in the right-hand sidepaces.
lie in C([0, 00), X X)) but their sum is inC([0, c0), X ). For Definition 3.1: Let A be the generator of a strongly con-
t > 0 we sete(t) = w(t) — z(t). We apply both equations tinuous semigrouf on X and letC € £(X1,Y). The pair
(2.6) and (2.7) to an arbitrary elemepte D((AX)*). Then (A, () is backward estimatabléf the following conditions
we subtract side by side the resulting equations and use (2.Byld:

to obtain (1) There exists an operatot’ : D(AX) — X that
t . .

B K generates an exponentially stable semigrSfpon X. We

et) —e(0) = /U ATe(£)d¢ vi=0. denote byXX, , the analogue of the spacé_; discussed

o K o earlier, for the operatoA/*.
This implies thate(t) = T} e(0), which is exactly (2.5).

; o (2) There existsH, € L(Y, XX ;) that is an admissible
The last statement in the proposition follows now from the K ’
. o K control operator fo§™, such that
exponential stability ofl™ . |

The system (2.4) is called abserverfor (A, C) (some- —Az = Afx — HyCx vz e D(A). (3.1)
times called a Luenberger observer or a Kalman observer).For (4,C) and H;, as in Definition 3.1,H, is called a
Such observers for systems with skew-adjolntunbounded Stabilizing backward output injection operatéor (A, C).

C and such that(4,C*,C) determine a regular linear Note that in the particular situation whéhis invertible

system, were recently discussed in Deguenon, Sallet afie., it can be extended to a groug}, C') is backward
Xu [8]. Other recent papers on the use of observers for trestimatable iff(—A, C') is estimatable.

control of linear DPS are Krstiet al. [15] and Guo and  Proposition 3.2:Assume thatA is the generator of a
Shao [10]. Observers for non-linear parabolic equations agrongly continuous grouff on X, C € £(X;,Y) is an

studied in Smyshlyaev and Krstic [26] and Krstital.[16]. admissible observation operator fir and the pair(4, C)

Remark 2.6:Sometimes we have to estimate the initiais exactly observable. Thei, C) is forward and backward
state of a system that receives an input signal, i.e., it gstimatable.
described by Proof. By Remark 2.3( A, C) is estimatable. On the other

. hand, sinceA is the generator of a strongly continuous

&(t) = Az(t) + Bu(t), group T, the exact observability ofA, C) easily implies

y(t) = C=(t) + Du(t), (28) that (— A, C) is exactly observable. Consequenfly, C) is

#(0) = 20 € D(A). also backward estimatable. |
Here we assume thét € L(U, X) andD € L(U,Y), where  proposition 3.3:With the notation and assumptions in
U is another Hilbert space, while' € £(X,,Y), as before. proposition 2.5, suppose that, C) is backward estimatable
It is not obvious how to make sense of these equationgnd letA’, H, be as in (3.1). Let > 0 and letw, be the

becauseC' is only defined onX; = D(A4). We assume, solution, in a sense similar to (2.1), of the backward problem
for the moment, that, € H[,_((0,00); U). Then it follows

from [28, Theorem 4.1.6] that the first equation in (2.8) has { wy(t) = — Affwy(t) + Hyy(t) fort <, 3.2)
a unique classical solution and this is a continuou&; - wy(1) = w(T),

valued function of the time. Thus, the second equation in\yherew is the solution of (2.4). Then

(2.8) defines a continuous-valued functiony. We assume

that the signak is available to the observer, defined by wy(0) — 20 = SETE (wo — 20), (3.3)
w(t) = ARw(t) + (B + HD)u(t) — Hy(t), whereS” is the semigroup generated By<. Moreover, the
w(0) =wp € X. pair (4,C) is exactly observable in any time such that

KTX)| < 1.

This equation has solutions that are continuous with valué@ — . .
d Proof. From the definition ofz (in Proposition 2.5),

in X, becausef is an admissible control operator f&@Y*.
A short computation and proof along the same lines as the B T
proof of Proposition 2.5 shows that the error satisfies the *(1) ~2(7) = 7/t Az()de ¥ te0,7]. (34
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The fact thatw, € C([0,00); X) satisfies (3.2) implies on X with growth boundw(T*) < «, and there exists
that for allt € [0, 7], H € L£(Y,XX)) such that (2.2) holds. (The proof of this
T T is very easy.)
wp(t) —wp(1) = / A wy (&) dgf/ Hyy(£)d¢. (3.5) Backwarda-estimatabilityis defined similarly:(A, C) is
¢ ¢ backwarda-estimatable if the paifA + of, C) is backward
Fort > 0 we setey(t) = wy(t) — 2(t). By subtracting side estimatable. In this case there exists an operatfr :
by side (3.4) from (3.5) and using the weak version of (3.1p(A%X) — X that generates a semigro* on X with

it follows that growth boundu(S™) < «, and there existél, € £(Y, XX))
Tk such that (3.1) holds.
ep(t) —ep(1) = /t Ay’ ep(§)dg vitelo], In Proposition 3.3 we could replace the estimatability

requirement witha-estimatability and the backward esti-

which implies that matability requirement with backwar@-estimatability, as

ep(t) = Sf,teb(T) Vtelo,r]. long asa+ 3 < 0 (the conclusions of the proposition remain
unchanged).
Sincee, (1) = w(7) — 2(7) = T (wo — 2) (see (2.5)), We  The proof is a straightforward extension of the proof of
obtain (3.3). Proposition 3.3. The above claim is a generalization of the

Finally we show that the pait4, ') is exactly observable gyal result of [22, Theorem 2.1] (it is more general here
in every time such that||[SKTX|| < 1. First note that pecause we do not require the semigrau be invertible,
according to (3.3), ifwy = 0 then and we do not requir€’ to be admissible). We mention

KK that in [22] there was a sign error in the definition @f
wp(0) = (I -5 T ) ~0- optimizability, the dual concept af-estimatability: A + o
appeared in place ol — af. There was a similar sign error
also in the definition of backward-optimizability.
In the particular case of time-reversible systems, we have

Since |SETX|| < 1, the operator in the above bracket is
invertible, so that

—1 .
2 = (1 — SKTK ) wy(0). (3.6) the following:
Proposition 3.6:Let A be the generator of a strongly
Note that from (2.4) and (3.2), continuous groud@ on X and letC € £(X;,Y). Assume

T the following:
w(r) = —/ T Hy(s)ds, (a) (4,C) is estimatable.

0 T (b) The operatordl; are uniformly bounded fot < 0.

K K .

wy(0) = Sy w(r) — ; S Hpy(s)ds. Then (4, C) is exactly observable.

o ] ) ) Proof. Let TX be the exponentially stable semigroup
Substituting the first formula into the second, it follows thal,5 iy Definition 2.1. We argue exactly as in the proof of

x [ K T K Proposition 3.3, but witht, = 0, so thatAf = —A and
wp(0) = =85 /0 Tr_oHy(s)ds */O Ss Hyy(s)ds. gK _ 7 We have||SKTX|| = |T_,TX|| < 1 for 7 > 0

. o large enough, so that (3.6) holds, and the proof is finished
Since H and H, are admissible control operators f& i the same way as for Proposition 3.3. ]

andS" respectively, it follows that there exists a constant It follows from this proposition and Proposition 3.2 that

K- >0 such that for a skew-adjointA and an admissible”, forward and
we(O)I < K+ llyll 20,7,y - backward estimatability are equivalent. In the particular case

. . o . of skew-adjoint generators and boundéf we have the
This together with (3.6) implies the exact observability Offollowing:

(4,C) in time 7. u Proposition 3.7: Assume thatd is skew-adjoint onX and

Remark 3.4:The above proposition can be seen as a gefet T be the unitary group ok generated byAd. Let C €
eralization of the dual form of Russell’s principle (see Rusself(X,Y). Then the following assertions are equivalent :

[24], [23]) which asserts that for an operator group, forward (i) (A, C) is estimatable.

and backward stabilizability implies exact controllability. In  (4i) (A4, C) is backward estimatable.

[5] an abstract version was given for systems with bounded (ii7) (A, C) is exactly observable.

input operators, and a more general abstract version was(iv) A—C*C generates an exponentially stable graip.
given in Rebarber and Weiss [22] (see the next remark Moreover, if (4, C) is exactly observable in time,, then
for more detailed comments on this). All these referencebe semigrougl™ defined in(iv) satisfies||TX|| < 1 for
assume that the system is time-reversible. everyT > 1.

Remark 3.5:Following the approach in [22], Proposition  Proof. The equivalence ofi)—(iv) is contained (in dual
3.3 could be generalized in the following way: for everyform) in Theorem 2.3 in Liu [20]. (The equivalence of
a € R, we definea-estimatability of(A, C') to mean that (i), (¢¢) and (i) is also an easy consequence of Propositions
(A — al,C) is estimatable. In this case there exists aB.2 and 3.6.) The last statement is Lemma 2.2 in Ito, Ramdani
operatorAX : D(AX) — X that generates a semigro  and Tucsnak [12]. [ |
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Remark 3.8:Proposition 3.3 implies, in particular, that We clearly have
there existM > 1, w > 0 (independent of) such that

[wp(0) = zof| < Me™*[lwo — 2o,

0™ (0) = 0 Vn>0. (3.11)

) o Moreover, it is not difficult to check that for every> 0 we
so that for larger, w;(0) is a good approximation of the pave

initial statezg. i
The process of computing/(r) using an observer and L — L0 Z (,U(zk) - ,U(2k+1)) ' (3.12)
then computingu, (0) using the backward observer (3.2), as b b & T
described in Proposition 3.3, may be regarded as one estima- | ) ) .
tion cycle, as described (under much simpler assumption&) Particular, by using the above relation at time= 0 and
in Section I. In the sequel we discuss iterative repetitions dfi€ initial condition (3.11), we obtain that
such estimation cycles. . (n) (0) = (2k+1)
We give an algorithm allowing the approximation af 20 = lim 2,7(0) = 2,7(0) + v (r). (3.13)
provided thatr is such that|SXTX|| < 1. More precisely, k=0
for 7 > 0 andz, € D(A), we consider the sequences™)  From (3.7)—(3.8) it easily follows that
and(z{"™) in C([0,7], X) defined as follows: For eveny > {

1) = AKy(n) 420 (y — C’zén)),

0, we definez(™ andz" as the solutions of )
o@ntl) — AK,@2n+1) _ 261, C* (y N Czlgn-‘r ))'

500(8) = AKZ00 () — Hy(t),

2 (0) = zé"’l)(o) for n>1, (3.7) The glternative algorit_hm coqsists of solving the apqye
20)(0) = wy equations forward in time, using the homogeneous initial
’ conditions (3.11). ASzlSn) can be expressed by (3.12) in
208 = — AK2M (1) + Hyy(t), 3.8) terms of v® for & < 2n — 1, we can compute the
AW (r) = 200(7). ©) sequences®”) and v(2"*+1) recursively. We can obtain an

i ) . approximation ofzy by truncating the series in (3.13). The
Herew, € X is an arbitrary initial guess for,. _ _ above alternative algorithm has been proposed in Phung and
Proposition 3.9: With the notation and assumptions '”Zhang [21] in the case of a Kirchhoff plate equation with

Propositions 2.5, 3.3, and using the above notation, for eVefistributed observation, so that their is bounded fromx
n € N we have oY,

z(")(()) — 29 = (SETX " (wo — 20) (3.9
b 0 T T 0 0/ : IV. A CLASS OF SECOND ORDER SYSTEMS WITH

UNBOUNDED OBSERVATION

In particular if 7 is such thaty = ‘ SETK | < 1, then

In this section we show that our main results can be
||ZI§">(0) — 20|| < ™ |lwo — 0| VneN. applied to a class of second order systems with unbounded
Proof. The functions: (™) andzé”) satisfy the assumptions observation operators studied, for example, in Weiss and

on w andwy in Proposition 3.3. It follows from (3.3) that Tucsnak [32]. Most of the systems modeling the linear

for every integem > 0 vibrations of elastic systems can be written in the form
(nt1) o KK described below. Note that the class of systems discussed
2,(0) = 20 = SETF (2 (0) - 20), in this section are not time reversible, in general.

The above formula clearly implies (3.9). The last conclusion First We introduce some notation. Léf be a Hilbert

is then straightforward. m shace, and letd, : D(Ag) — H be a strictly positive

) _ . : . operator. We introduce the scale of Hilbert spadés,
Remark 3.10:If wy = 0, then the iterative algorithm for o € R, as follows: for everya > 0, H, — D(AS), with

approximating given in the above proposition is equivalent o o : :
to performing the inversion in (3.6) using the correspondin%:e nom ||glle = [|AG¢|n. The spaceH ., is defined

Neumann series. We leave it to the reader to verify this fac y du_ahg, \:c\(/)ltrharisgeét fj?v;?eent?lvf?[t Sﬁ:ﬁeisorfr?nl?a \a/in
Remark 3.11:In the colocated casd = —A* and H = e - =4 Yoll—a P

H, = —C* (discussed in Remark 2.4) the approximatior?f H with respect to the nornj|ga||,a_ |40 SDHH' The
. . o : .~ operator4, can be extended (or restricted) to edél, such
algorithm in Proposition 3.9 can be reformulated in an inter; .
) . that it becomes a bounded operator
esting alternative way such that the forward and backwar

problems (3.7) and (3.8) become forward problems with the Ag: Ho— Hy VaeR. 4.1)
same generator and with zero initial data. For this, first we ) )
introduce the time reflection operatafk, for everyr > 0, Let Co € L(Hy,Y), whereY is another Hilbert space.

. . .2 .
as follows: if u is a function defined on the intervéd, 7], \We |der:t|ny with its dual, so that = Y’. We denote
then(sL,u)(t) = u(r—t). Forn > 0 we define the sequences Bo = Cg, S0 thatBy € L(Y, H_).
Consider the system described by
{ (1) — L (n1) _%n)y

) . (3.10) 42 d
vt — o, (ZIEHH) — 2 H)) : 72 4(0) +Aog(t) +7Bo - Cog(t) =0, (4.2)
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y(t) = iCoq(t), (4.3) holdsinX_ ;. Letz = [7] € D(A(y)) and¢ = [}] €
dt D ((A(1))*). Using (4.5), (4.6), (4.8) and (4.9) we get

wherey > 0 is a constant and € [0,00) is the time.

The equation (4.2) is understood as an equatiorfin: (2, (A1) ) x — (Cz, H"¢) = ( Zo, Adn)
(i.e., all the terms are inH_%). Here, ¢ stands for the + (¢, Ap§ — BoCon) — (v — 1){Co2, Com)
displacement field and the termBO%COq(t), informally = —(Adoo,mu ,.H, (AémA &)
written as~yByCoq(t), represents a viscous damping. The — (Cob, Com) — (v — 1){Cotb, Con)
statez(t) of this system and its state spaaeare defined L 7 ’
by = (A5, A5 §)—(Aop, 77>H7%,H% —v(BoCo), 77>H7%,H% -
2(t) = [38} ’ X =H, xH. Sincez € D(A(y)), it follows that
It is easy to verify that the equations (4.2), (4.3) are equiv- (2, (AQ))"0)x — (C2, H ¢) = (A5v, A5E)
alent to the following system of first order equations: — (Ao +vBoCoth,m) = (A(7)2, ¢)x
) = A(y)=(t) According to Definition 2.1, the above formula implies that
{ ) _ C Zt) ’ (4.4) the pair(A(n),C) is estimatable with the output injection
y = VA operatorH given by (4.10).
where .Let X4, | be the dual ofD(A(1)) with respect to the
0 I pivot spaceX. In order to show thatA(v), C) is backward
Aly) = 45 i :
("7) { — Ay —7BoCo } (4.5) estimatable we prove below that the relation
A2 = — A(y)z + HyCz V z € D(A(v)),
D(A(7)) = {[ﬂ € Hy x Hy | Ao +yBoCot) GH} holds in X7, ,. Let = = [£] € D(A(y)) and¢ = [§] €
(4.6) D(A(1)). Usmg (4.5), (4.6), (4.8) and (4.9), we get
C:DAM) =Y, C=[0Cl. (A7) (2, A1)y — (Cz Hid) = (AT, AZn)
It is well known thatA(0) generates a unitary group ik — (¥, Ao€ + BoCon) + 1(7 + 11)<001/)’ Con)
(see, for instance, [28, Proposition 3.8.7]). For every 0 = (Ao, mu ,.u, — (AZV, AZE)
the operatord(+) generates a semigroup of contractions (see, 2
for instance, [32, Proposition 5.1]). It is not difficult to check _1<001/)’ Coln) + (v + D{Co¥, Con)
that the adjoint ofd(y) is given by = (A5 (=), AG &) + (Ao, M, 1,
+’Y<BOCO¢777>H 1,H1 -
D(A('y)*)z{[i] € Hy x Hy |Aop — vBoCoyp € H EEA
(4.8) Sincez € D(A(vy)), it follows that
‘ 0~ : A ;
A =1 o e @9) (A G)y — (2 6) = (4] (0), 436)
+ (Ao +7BoCoty,n) = — (A(7)z,d)x

The result below shows that the results in Section Il can b&ccordmg to Definition 2.1, the above formula implies that
applied to the system (4.4).

. N i the pair(—A(y), C) is estimatable, with the output injection
Proposition 4.1: With the above notation, assume tha peratorH,, given by (4.10). m
A(1) is the generator of an exponentially stable semigroup . . .

By combining the last result and Proposition 3.9 we obtain

TX on X. Then for everyy > 0, the pair(A(y),C) is lorith . he initial ¢ th
estimatable and backward estimatable. The correspondlﬁLg algorithm to estlmate the initial state o t.e system
(4.2)—(4.3). More precisely, for eveny > 0 we define the

output injection operators are )
sequencegg™) and(g,"’) by

_ 0 _ 0 () (n) (¢ () (1) = (1 —
H = {(7 1)30} , Hy = {(,H 1)30} . (4.10) Q(n)(t) ‘*‘_Ao(g_l)( ) + BoCog'™ (1) (0()1 z)Boyy
Proof. Let X_; ; be the dual ofD (A(1)*) with respect ¢ (0) = g, . (0) for n =1, b (0) = wo,
to the pivot spaceX. In this proof, inner products i or d™(0) = ¢""V(0) for n>1, ¢ (0) = wi,
in Y will not have subscripts, the others will. In order to . - - (4.11)
show that(A(v), C) is estimatable, we prove below that the | @ (t)+4og, (1) = BoCog, " (t) = — (14+7)Boy,
relation q<">(7) q(”)( ),
i) = {0,
Az = A(y)z+ HCz vV z € D(A(%)) (4.12)
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Herewg € H% andw;, € H are arbitrary initial guesses for [20]
qo andq;.

Recall from Proposition 4.1 thaf® denotes the semi-
group generated byl(1). From Proposition 3.9 we obtain [22]
the following:

Corollary 4.2: Assume thatTX is exponentially stable
and letr > 0 be such that|TX || < 1. Denotea = || TX|*.
Then for alln € N,

a7 ©) = g, + |4 (0) - o)

< ™ (o — g(O)|13 + fjwr — q<o>||22 -

The second example in the journal version of this paper
shows that the above abstract setting can be applied to/28]
system described by the wave equation in a dorflain R™
with velocity observation on a part of the boundary.
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