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Abstract— Let A be the generator of a strongly continuous
semigroup T on the Hilbert space X, and let C be a linear
operator from D(A) to another Hilbert space Y (possibly
unbounded with respect toX, not necessarily admissible). We
consider the problem of estimating the initial statez0 ∈ D(A)
(with respect to the norm ofX) from the output function y(t) =
CTtz0, given for all t in a bounded interval [0, τ ]. We introduce
the concepts of estimatability and backward estimatability for
(A, C) (in a more general way than currently available in
the literature), we introduce forward and backward observers,
and we provide an iterative algorithm for estimating z0 from
y. This algorithm generalizes various algorithms proposed
recently for specific classes of systems and it is an attractive
alternative to methods based on inverting the Gramian. Our
results lead also to a very general formulation of Russell’s
principle, i.e., estimatability and backward estimatability imply
exact observability. This general formulation of the principle
does not requireT to be invertible.

I. I NTRODUCTION

In many areas of science and engineering it is important to
estimate the initial (or the final) state of a linear distributed
parameter system (DPS) from its input and output functions
measured over some finite time interval. In oceanography
and meteorology this problem is calleddata assimilation,
see for example Auroux and Blum [3], [4], Le Dimet et
al [19], Teng et al [27] or Zou et al [33]. Such a problem
also arises in the context of medical imaging byimpedance-
acoustic tomography; see for instance Gebauer and Scherzer
[9] and the review paper by Kuchment and Kunyansky [17].
The estimation of the initial state can also be regarded as
the main step in solving inverse source problems, see Alvez
et al [1]. An infinite-dimensional system is calledexactly
observable in timeτ if the problem of estimating the initial
state from data measured over a time interval of lengthτ is
well-posed (see Section II for precise definitions).

Suppose now that we have an exactly observable linear
DPS. The actual formula for expressing the initial state from
the measured segment of the input and output functions
involves inverting the Gramian operator of the system (see,
for instance, Tucsnak and Weiss [28, Section 6.1]), and this
may be numerically very challenging.

On the other hand, if we find astabilizing output injection
operator for the system (its existence follows from exact
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(IECN), B.P. 70239, 54506 Vandoeuvre-les-Nancy, France
Marius.Tucsnak@iecn.u-nancy.fr

observability), then we can use a numerical solver to im-
plement anobserverfor the DPS in order to estimate its
current state from the measured inputs and outputs of the
system (see Section II for details). The estimate improves as
time goes by, more precisely, the estimation error tends to
zero as time goes to infinity. From the final state we can, in
principle, recover the initial state if the dynamics are time
reversible. However, this may increase the estimation error
and moreover, sometimes we do not have a very long (in
time) segment of output data to operate on.

The purpose of this paper is to describe a way in which
we can estimate the initial state of a linear DPS by operating
only on a finite segment of output data. In short, the idea is to
scan the same segment of data back and forth several times,
using two observers, one working in forward time, and one
in backward time. This idea has appeared in the recent papers
[3], [4] where the method has been mathematically justified
for finite-dimensional linear systems with full observation
and it has been numerically investigated for more general
situations (in particular nonlinear systems). A related work
is Phung and Zhang [21] where, based on time reversal meth-
ods, the authors develop a method to identify the initial state
for a Kirchhoff plate equations with distributed observation.
The algorithm in this last paper can be shown to be equivalent
to a particular case of the algorithm presented in this paper
(see Remark 3.11 below). In [3], [4] the algorithm has been
called “back and forth nudging” whereas in [21] it has
been called “time reversal focusing”. An abstract formulation
of a related algorithm, suitable for skew-adjoint generators
and bounded observation operators, has been given in Ito,
Ramdani and Tucsnak [12].

Linear DPS often have unbounded control and/or obser-
vation operators. This is often the consequence of boundary
control and/or boundary observation (see [28] for an elemen-
tary introduction to this topic). To make our basic ideas more
easily understandable, we give in this introductory section
a short presentation of the simple particular case when
the observation operator is bounded, the output injection
operators are also bounded and the semigroup is invertible
(i.e., the observed system is time reversible). However, we
emphasize that our results do not require the observation
and output injection operators to be bounded (not even
admissible), and we also do not require the observed system
to be time reversible.

Let X and Y be Hilbert spaces, called thestate space
and output space, respectively. LetA : D(A)→X be the
generator of a strongly continuous group of operators onX .
This group describes the (time reversible) dynamics of our
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system. The system is described by the equations

ż(t) = Az(t) , y(t) = Cz(t) ,

with an initial statez(0) ∈ X , where y is the output
function. We assume (in this simplified presentation) that
C ∈ L(X,Y ). The operatorC is called theobservation op-
erator. We assume that(A,C) is estimatablewith bounded
injection, which means that there exists anH ∈ L(Y,X)
such thatA + HC generates an exponentially stable semi-
group onX . In this case, we can construct anobserverfor
our system as follows: the state of the observer isw and it
satisfies the differential equation

ẇ(t) = (A+HC)w(t) −Hy(t) ,

with an initial statew(0) ∈ X . We refer to Curtain and Zwart
[7] for a discussion of observers in this context. If we define
the estimation errorby e(t) = w(t) − z(t), then it is clear
(from subtracting the two differential equations) that

ė(t) = (A+HC)e(t) ,

which shows thate→ 0 exponentially, regardless of the
initial states of the system and the observer.

Now suppose that(A,C) is backward estimatablewith
bounded injection, which means there exists anHb ∈
L(Y,X) such that−A + HbC is the generator of an
exponentially stable semigroup onX . In this case, we can
construct abackward observerfor our system as follows:
the state of the observer iswb and it satisfies the differential
equation

ẇb(t) = (A−HbC)wb(t) +Hby(t) ,

with a final statewb(τ) ∈ X . This equation should be
solved backward in timeon [0, τ ], starting from the final
statewb(τ). If we define thebackward estimation errorby
eb(t) = wb(t) − z(t), then from subtracting the differential
equations we see that

ėb(t) = (A−HbC)eb(t) ,

which shows that

eb(0) = e(−A+HbC)τeb(τ) .

We define oneestimation cycleas follows: with the data
y(t) given for t ∈ [0, τ ], we choose an initial statew(0) for
the observer and run it over the interval[0, τ ], obtaining an
estimatew(τ) for the unknown statez(τ). Puttingwb(τ) =
w(τ), we run the backward observer to obtain an estimate
wb(0) for the unknown statez(0). The estimation error at
the end of such a cycle is

eb(0) = e(−A+HbC)τe(A+HC)τe(0) .

If we runN estimation cycles (N ∈ N) then the estimation
error at the end will be

e
(N)
b (0) =

[

e(−A+HbC)τe(A+HC)τ
]N

e(0)(0) .

Since the semigroups generated byA+HC and−A+HbC

are exponentially stable, forτ > 0 large enough, we have
∥

∥

∥
e(−A+HbC)τe(A+HC)τ

∥

∥

∥
< 1 .

For such τ , repeating estimation cycles leads to a rapid
convergence of the estimation error to zero.

Notice that it follows from the above argument that under
the stated assumptions (all the operators apart fromA are
bounded, estimatability and backward estimatability), the
original system is exactly observable. This is a dual version
of Russell’s principle,which was originally stated in Russell
[23], [24] and has been used in many references, such as
Komornik [13]. A rigorous and general statement and proof
of the principle can be found in the little known conference
paper Rebarber and Weiss [22]. The precise statement of
a more general version of the dual Russell’s principle (not
confined to bounded operators and not requiring that the
semigroup is invertible) will be given in Proposition 3.3. An
even more general version will be given in Remark 3.5.

II. BACKGROUND ON ADMISSIBILITY, OBSERVABILITY

AND OBSERVERS

First we give some technical background about linear
DPS. More precisely, we recall some simple facts about
admissibile observation and control operators, exact observ-
ability and estimatability. There is a large literature on
admissibility and we refer to Chapter 5 of [28] for an
elementary introduction and for references and historical
comments. Here we keep the discussion to the minimum that
is needed. The concept of estimatability is one of the infinite-
dimensional generalizations of the well-known concept of
detectability used in finite-dimensional control theory. It
is much less well-known than admissibility, and our basic
reference for this concept is Weiss and Rebarber [31].

Let X and Y be Hilbert spaces and assume thatA :
D(A)→X is the generator of a strongly continuous semi-
group T on X . We define the Hilbert spaceX1 = D(A),
with the norm

‖z0‖1 = ‖(βI −A)z0‖ ∀ z0 ∈ D(A) ,

whereβ is an arbitrary fixed element of the resolvent set
ρ(A). Regardless of the choice ofβ, the above norm is
equivalent to the graph norm.

LetC ∈ L(X1, Y ). For everyτ > 0 we define the operator
Ψτ : X1 →L2([0, τ ];Y ) by

(Ψτz0)(t) = CTtz0 ∀ t ∈ [0, τ ] , z0 ∈ D(A) .

We call C an admissible observation operatorfor T if
for some (hence, for every)τ > 0, Ψτ has a continuous
extension toX , i.e., Ψτ ∈ L(X,L2([0, τ ];Y )). If this is
the case, then there exists a unique continuous operator
Ψ : X→L2

loc([0,∞), Y ) such that for everyτ > 0 and
z0 ∈ X , Ψτz0 is the restriction ofΨz0 to the interval[0, τ ].
The Laplace transform ofy = Ψz0 is ŷ = C(sI − A)−1z0,
for all z0 ∈ X and for alls ∈ C for whichℜs is larger than
the growth bound ofT.
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With X,A as above andC ∈ L(X1, Y ), the pair(A,C)
is called exactly observable in timeτ > 0 if there exists
kτ > 0 such that

∫ τ

0

‖CTtz0‖
2dt ≥ k2

τ‖z0‖
2 ∀ z0 ∈ D(A) .

The pair(A,C) is calledexactly observableif it is exactly
observable in some timeτ > 0.

Note that in the above definition we have not assumed
thatC is admissible. This is different from the terminology
adopted in [28], where admissibility is a part of the definition
of exact observability (in timeτ ).

LetX−1 be the completion ofX with respect to the norm

‖z0‖−1 = ‖(βI −A)−1z0‖ ∀ z0 ∈ X ,

whereβ is as before. This space may be regarded as the dual
of D(A∗) with graph norm, with respect to the pivot space
X . We haveX1 ⊂ X ⊂ X−1, densely and with continuous
embeddings. The semigroupT can be extended to a strongly
continuous semigroup acting onX−1, whose generator is an
extension ofA, having the domainX . Notationally, we shall
not distinguish betweenT and its extension, or betweenA
and its extension. LetU be another Hilbert space and let
B ∈ L(U,X−1). For everyτ > 0 we define the operator
Φτ : L2([0, τ ];U)→X−1 by

Φτu =

∫ τ

0

Tt−σBu(σ)dσ.

We callB an admissible control operatorfor T if for some
(hence, for every)τ > 0, the range ofΦτ is contained in
X . If this is the case, thenΦτ is bounded fromL2([0, τ ];U)
to X . If u ∈ L2

loc([0,∞), U) then by Φτu we meanΦτ
applied to the truncation ofu to [0, τ ]. If B is admissible then
Φτu is a continuousX-valued function. Moreover, for any
u ∈ L2

loc([0,∞), U) and anyz0 ∈ X , the functionz(t) =
Ttz0 + Φtu satisfiesż(t) = Az(t)+Bu(t) in the sense that
it satisfies (for allτ ≥ 0) the integral equation

z(τ) − z(0) =

∫ τ

0

[Az(t) +Bu(t)]dt . (2.1)

In fact, the functionz defined earlier is the unique solution of
the above integral equation that satisfies the initial condition
z(0) = z0.

Definition 2.1: Let A be the generator of a strongly con-
tinuous semigroupT onX and letC ∈ L(X1, Y ). The pair
(A,C) is estimatableif the following conditions hold:

(1) There exists an operatorAK : D(AK)→X that
generates an exponentially stable semigroupT

K on X . We
denote byXK

−1 the analogue of the spaceX−1 discussed
earlier, for the operatorAK .

(2) There existsH ∈ L(Y,XK
−1) that is an admissible

control operator forTK , such that

Ax = AKx−HCx ∀ x ∈ D(A) . (2.2)
Following the finite-dimensional terminology, we callH

as above astabilizing output injection operatorfor (A,C).

Note that in (2.2), bothAKx andHCx are inXK
−1, but

their difference is inX . The equation (2.2) can be rewritten
equivalently in weak form as follows:

〈Ax, φ〉X =
〈

x, (AK)∗φ
〉

X
− 〈Cx,H∗φ〉Y

∀ x ∈ D(A), φ ∈ D
(

(AK)∗
)

. (2.3)

Remark 2.2:In the finite-dimensional control literature
as well as in the literature on DPS with bounded control
and observation operators, the property defined above is
calleddetectability. When dealing with unbounded operators,
detectability has several (non-equivalent) generalizations. A
more restrictive one has been given in Weiss and Curtain
[30], where there are additional assumptions, for example,
(A,H,C) has to be a regular triple. This more restrictive
concept is called detectability in [30]. The above definition
of estimatability is close to, but not equal to the one in [31].
Indeed, in [31]C is assumed to be admissible forT, while
here we have dropped this requirement. Even for admissible
C, the definition of estimatability in [31] looks different from
the one given here, but they are equivalent, see Propositions
3.3, 3.4 and 4.4 in [31].

Remark 2.3:It is known (see [31, Section 1]) that ifC
is admissible forT, then the exact observability of the pair
(A,C) implies its estimatability.

Remark 2.4:GivenA andC it is usually not a simple task
to find a stabilizing output injection operatorH for them.
Some approaches involve Riccati equations (see, for instance,
Lasiecka [18]), other approaches involve Gramians (see, for
example, Komornik [14] and Urquiza [29]). These methods
for determiningH are computationally expensive in general.
If A is skew-adjoint (or close to skew-adjoint) then often we
can chooseH = −C∗. Such anH is calledcolocated output
injection, and it is dual to colocated state feedback. Colocated
state feedback has been studied a lot in the literature on
distributed parameter systems. Among the early papers we
mention Slemrod [25] and Haraux [11]. For the case of skew-
adjointA and boundedC see our Proposition 3.7. Curtain
and Weiss [6] contains many further references on this topic
and it gives rather general sufficient conditions on(A,B)
for −B∗ to be a stabilizing state feedback operator. Ammari
and Tucsnak [2] considered the case of second order systems
without damping.

The above definition of estimatability is clearly a gener-
alization of the one given in the Introduction for bounded
operatorsC andH . It may seem very abstract, but it implies
the solvability of a reasonably natural final state estimation
problem:

Proposition 2.5:Assume that the pair(A,C) is estimat-
able and letT, AK ,TK , H be as in Definition 2.1. Takez0 ∈
D(A), let z ∈ C([0,∞);X1) be defined byz(t) = Ttz0 and
let y ∈ C([0,∞);Y ) be defined byy = Cz. Let w0 ∈ X

and letw ∈ C([0,∞);X) be the solution of

ẇ(t) = AKw(t) −Hy(t), w(0) = w0 , (2.4)

in the sense of (2.1). Then

w(t) − z(t) = T
K
t (w0 − z0) ∀ t ≥ 0. (2.5)
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In particular, there existM ≥ 1, ω > 0 such that

‖w(t) − z(t)‖ ≤ Me−ωt‖w0 − z0‖ ∀ t ≥ 0 .
Proof. Clearly for all t ≥ 0,

z(t) − z0 =

∫ t

0

Az(ξ)dξ , (2.6)

wherez andAz are continuousX-valued functions. The fact
thatw ∈ C([0,∞);X) satisfies (2.4) implies (see (2.1)) that
for all t ≥ 0,

w(t) − w0 =

∫ t

0

AKw(ξ)dξ −

∫ t

0

Hy(ξ)dξ . (2.7)

In the above formula the two terms in the right-hand side
lie in C([0,∞), XK

−1) but their sum is inC([0,∞), X). For
t ≥ 0 we sete(t) = w(t) − z(t). We apply both equations
(2.6) and (2.7) to an arbitrary elementφ ∈ D((AK)∗). Then
we subtract side by side the resulting equations and use (2.3),
to obtain

e(t) − e(0) =

∫ t

0

AKe(ξ)dξ ∀ t ≥ 0.

This implies thate(t) = T
K
t e(0), which is exactly (2.5).

The last statement in the proposition follows now from the
exponential stability ofTK .

The system (2.4) is called anobserverfor (A,C) (some-
times called a Luenberger observer or a Kalman observer).
Such observers for systems with skew-adjointA, unbounded
C and such that(A,C∗, C) determine a regular linear
system, were recently discussed in Deguenon, Sallet and
Xu [8]. Other recent papers on the use of observers for the
control of linear DPS are Krsticet al. [15] and Guo and
Shao [10]. Observers for non-linear parabolic equations are
studied in Smyshlyaev and Krstic [26] and Krsticet al. [16].

Remark 2.6:Sometimes we have to estimate the initial
state of a system that receives an input signal, i.e., it is
described by







ż(t) = Az(t) +Bu(t) ,
y(t) = Cz(t) +Du(t),
z(0) = z0 ∈ D(A) .

(2.8)

Here we assume thatB ∈ L(U,X) andD ∈ L(U, Y ), where
U is another Hilbert space, whileC ∈ L(X1, Y ), as before.
It is not obvious how to make sense of these equations,
becauseC is only defined onX1 = D(A). We assume,
for the moment, thatu ∈ H1

loc((0,∞);U). Then it follows
from [28, Theorem 4.1.6] that the first equation in (2.8) has
a unique classical solutionz and this is a continuousX1-
valued function of the timet. Thus, the second equation in
(2.8) defines a continuousY -valued functiony. We assume
that the signalu is available to the observer, defined by

{

ẇ(t) = AKw(t) + (B +HD)u(t) −Hy(t),
w(0) = w0 ∈ X .

This equation has solutions that are continuous with values
in X , becauseH is an admissible control operator forT

K .
A short computation and proof along the same lines as the
proof of Proposition 2.5 shows that the error satisfies the

same equation (2.5) as before. This shows that the map
(z0, w0, u) 7→ w(τ) (which is obtained by combining the
observer with the system) can be extended by continuity to
a bounded operator fromX×X×L2([0, τ ];U) toX (without
assumingC to be admissible).

III. I TERATIONS USING FORWARD AND BACKWARD

OBSERVERS

In order to estimate the initial state of a system iteratively
using output data from a finite time interval, we need the
notion of backward estimatability, defined below. In this
section (as in the previous one)X and Y denote Hilbert
spaces.

Definition 3.1: Let A be the generator of a strongly con-
tinuous semigroupT onX and letC ∈ L(X1, Y ). The pair
(A,C) is backward estimatableif the following conditions
hold:

(1) There exists an operatorAKb : D(AKb ) → X that
generates an exponentially stable semigroupS

K on X . We
denote byXK

−1,b the analogue of the spaceX−1 discussed
earlier, for the operatorAKb .

(2) There existsHb ∈ L(Y,XK
−1,b) that is an admissible

control operator forSK , such that

−Ax = AKb x−HbCx ∀ x ∈ D(A) . (3.1)
For (A,C) andHb as in Definition 3.1,Hb is called a

stabilizing backward output injection operatorfor (A,C).
Note that in the particular situation whenT is invertible

(i.e., it can be extended to a group),(A,C) is backward
estimatable iff(−A,C) is estimatable.

Proposition 3.2:Assume thatA is the generator of a
strongly continuous groupT on X , C ∈ L(X1, Y ) is an
admissible observation operator forT and the pair(A,C)
is exactly observable. Then(A,C) is forward and backward
estimatable.

Proof. By Remark 2.3,(A,C) is estimatable. On the other
hand, sinceA is the generator of a strongly continuous
group T, the exact observability of(A,C) easily implies
that (−A,C) is exactly observable. Consequently,(A,C) is
also backward estimatable.

Proposition 3.3:With the notation and assumptions in
Proposition 2.5, suppose that(A,C) is backward estimatable
and letAKb , Hb be as in (3.1). Letτ > 0 and letwb be the
solution, in a sense similar to (2.1), of the backward problem

{

ẇb(t) = −AKb wb(t) +Hby(t) for t ≤ τ,

wb(τ) = w(τ) ,
(3.2)

wherew is the solution of (2.4). Then

wb(0) − z0 = S
K
τ T

K
τ (w0 − z0) , (3.3)

whereS
K is the semigroup generated byAKb . Moreover, the

pair (A,C) is exactly observable in any timeτ such that
‖S

K
τ T

K
τ ‖ < 1.

Proof. From the definition ofz (in Proposition 2.5),

z(t) − z(τ) = −

∫ τ

t

Az(ξ)dξ ∀ t ∈ [0, τ ] . (3.4)
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The fact thatwb ∈ C([0,∞);X) satisfies (3.2) implies
that for all t ∈ [0, τ ],

wb(t)−wb(τ) =

∫ τ

t

AKb wb(ξ)dξ −

∫ τ

t

Hby(ξ)dξ . (3.5)

For t ≥ 0 we seteb(t) = wb(t) − z(t). By subtracting side
by side (3.4) from (3.5) and using the weak version of (3.1)
it follows that

eb(t) − eb(τ) =

∫ τ

t

AKb eb(ξ)dξ ∀ t ∈ [0, τ ],

which implies that

eb(t) = S
K
τ−teb(τ) ∀ t ∈ [0, τ ].

Sinceeb(τ) = w(τ) − z(τ) = T
K
τ (w0 − z0) (see (2.5)), we

obtain (3.3).
Finally we show that the pair(A,C) is exactly observable

in every time τ such that‖S
K
τ T

K
τ ‖ < 1. First note that

according to (3.3), ifw0 = 0 then

wb(0) =
(

I − S
K
τ T

K
τ

)

z0 .

Since ‖S
K
τ T

K
τ ‖ < 1, the operator in the above bracket is

invertible, so that

z0 =
(

I − S
K
τ T

K
τ

)

−1

wb(0) . (3.6)

Note that from (2.4) and (3.2),










w(τ) = −

∫ τ

0

T
K
τ−sHy(s)ds,

wb(0) = S
K
τ w(τ) −

∫ τ

0

S
K
s Hby(s)ds.

Substituting the first formula into the second, it follows that

wb(0) = − S
K
τ

∫ τ

0

T
K
τ−sHy(s)ds−

∫ τ

0

S
K
s Hby(s)ds.

SinceH andHb are admissible control operators forT
K

and S
K respectively, it follows that there exists a constant

Kτ > 0 such that

‖wb(0)‖ ≤ Kτ‖y‖L2([0,τ ],Y ) .

This together with (3.6) implies the exact observability of
(A,C) in time τ .

Remark 3.4:The above proposition can be seen as a gen-
eralization of the dual form of Russell’s principle (see Russell
[24], [23]) which asserts that for an operator group, forward
and backward stabilizability implies exact controllability. In
[5] an abstract version was given for systems with bounded
input operators, and a more general abstract version was
given in Rebarber and Weiss [22] (see the next remark
for more detailed comments on this). All these references
assume that the system is time-reversible.

Remark 3.5:Following the approach in [22], Proposition
3.3 could be generalized in the following way: for every
α ∈ R, we defineα-estimatability of(A,C) to mean that
(A − αI,C) is estimatable. In this case there exists an
operatorAK : D(AK)→X that generates a semigroupT

K

on X with growth boundω(TK) < α, and there exists
H ∈ L(Y,XK

−1) such that (2.2) holds. (The proof of this
is very easy.)

Backwardα-estimatabilityis defined similarly:(A,C) is
backwardα-estimatable if the pair(A+αI,C) is backward
estimatable. In this case there exists an operatorAKb :
D(AK)→X that generates a semigroupSK on X with
growth boundω(SK) < α, and there existsHb ∈ L(Y,XK

−1)
such that (3.1) holds.

In Proposition 3.3 we could replace the estimatability
requirement withα-estimatability and the backward esti-
matability requirement with backwardβ-estimatability, as
long asα+β ≤ 0 (the conclusions of the proposition remain
unchanged).

The proof is a straightforward extension of the proof of
Proposition 3.3. The above claim is a generalization of the
dual result of [22, Theorem 2.1] (it is more general here
because we do not require the semigroupT to be invertible,
and we do not requireC to be admissible). We mention
that in [22] there was a sign error in the definition ofα-
optimizability, the dual concept ofα-estimatability:A+ αI

appeared in place ofA−αI. There was a similar sign error
also in the definition of backwardα-optimizability.

In the particular case of time-reversible systems, we have
the following:

Proposition 3.6:Let A be the generator of a strongly
continuous groupT on X and letC ∈ L(X1, Y ). Assume
the following:

(a) (A,C) is estimatable.
(b) The operatorsTt are uniformly bounded fort ≤ 0.
Then (A,C) is exactly observable.
Proof. Let T

K be the exponentially stable semigroup
as in Definition 2.1. We argue exactly as in the proof of
Proposition 3.3, but withHb = 0, so thatAKb = −A and
S
K
t = T−t. We have‖S

K
τ T

K
τ ‖ = ‖T−τT

K
τ ‖ < 1 for τ > 0

large enough, so that (3.6) holds, and the proof is finished
in the same way as for Proposition 3.3.

It follows from this proposition and Proposition 3.2 that
for a skew-adjointA and an admissibleC, forward and
backward estimatability are equivalent. In the particular case
of skew-adjoint generators and boundedC, we have the
following:

Proposition 3.7:Assume thatA is skew-adjoint onX and
let T be the unitary group onX generated byA. Let C ∈
L(X,Y ). Then the following assertions are equivalent :

(i) (A,C) is estimatable.
(ii) (A,C) is backward estimatable.
(iii) (A,C) is exactly observable.
(iv) A−C∗C generates an exponentially stable groupT

K .
Moreover, if (A,C) is exactly observable in timeτ0, then

the semigroupTK defined in(iv) satisfies‖T
K
τ ‖ < 1 for

everyτ ≥ τ0.
Proof. The equivalence of(i)–(iv) is contained (in dual

form) in Theorem 2.3 in Liu [20]. (The equivalence of
(i), (ii) and(iii) is also an easy consequence of Propositions
3.2 and 3.6.) The last statement is Lemma 2.2 in Ito, Ramdani
and Tucsnak [12].
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Remark 3.8:Proposition 3.3 implies, in particular, that
there existM ≥ 1, ω > 0 (independent ofτ ) such that

‖wb(0) − z0‖ ≤ Me−ωτ‖w0 − z0‖ ,

so that for largeτ , wb(0) is a good approximation of the
initial statez0.

The process of computingw(τ) using an observer and
then computingwb(0) using the backward observer (3.2), as
described in Proposition 3.3, may be regarded as one estima-
tion cycle, as described (under much simpler assumptions)
in Section I. In the sequel we discuss iterative repetitions of
such estimation cycles.

We give an algorithm allowing the approximation ofz0
provided thatτ is such that‖S

K
τ T

K
τ ‖ < 1. More precisely,

for τ > 0 andz0 ∈ D(A), we consider the sequences(z(n))

and(z
(n)
b ) in C([0, τ ], X) defined as follows: For everyn ≥

0, we definez(n) andz(n)
b as the solutions of







ż(n)(t) = AKz(n)(t) −Hy(t) ,

z(n)(0) = z
(n−1)
b (0) for n ≥ 1 ,

z(0)(0) = w0,

(3.7)

{

ż
(n)
b (t) = −AKb z

(n)
b (t) +Hby(t) ,

z
(n)
b (τ) = z(n)(τ) .

(3.8)

Herew0 ∈ X is an arbitrary initial guess forz0.
Proposition 3.9:With the notation and assumptions in

Propositions 2.5, 3.3, and using the above notation, for every
n ∈ N we have

z
(n)
b (0) − z0 =

(

S
K
τ T

K
τ

)n+1

(w0 − z0) . (3.9)

In particular if τ is such thatα =
∥

∥

∥
S
K
τ T

K
τ

∥

∥

∥
< 1, then

‖z
(n)
b (0) − z0‖ ≤ αn+1‖w0 − z0‖ ∀ n ∈ N .

Proof. The functionsz(n) andz(n)
b satisfy the assumptions

on w andwb in Proposition 3.3. It follows from (3.3) that
for every integern ≥ 0

z
(n+1)
b (0) − z0 = S

K
τ T

K
τ (z(n)(0) − z0) ,

The above formula clearly implies (3.9). The last conclusion
is then straightforward.

Remark 3.10:If w0 = 0, then the iterative algorithm for
approximatingz0 given in the above proposition is equivalent
to performing the inversion in (3.6) using the corresponding
Neumann series. We leave it to the reader to verify this fact.

Remark 3.11:In the colocated caseA = −A∗ andH =
Hb = −C∗ (discussed in Remark 2.4) the approximation
algorithm in Proposition 3.9 can be reformulated in an inter-
esting alternative way such that the forward and backward
problems (3.7) and (3.8) become forward problems with the
same generator and with zero initial data. For this, first we
introduce the time reflection operatorsRτ for everyτ > 0,
as follows: if u is a function defined on the interval[0, τ ],
then( Rτu)(t) = u(τ−t). Forn ≥ 0 we define the sequences

{

v(2n) = z(n+1) − z
(n)
b ,

v(2n+1) = Rτ

(

z
(n+1)
b − z(n+1)

)

.
(3.10)

We clearly have

v(n)(0) = 0 ∀ n ≥ 0 . (3.11)

Moreover, it is not difficult to check that for everyn ≥ 0 we
have

z
(n)
b = z

(0)
b +

n−1
∑

k=0

(

v(2k) + Rτv
(2k+1)

)

. (3.12)

In particular, by using the above relation at timet = 0 and
the initial condition (3.11), we obtain that

z0 = lim
n→∞

z
(n)
b (0) = z

(0)
b (0) +

∞
∑

k=0

v(2k+1)(τ). (3.13)

From (3.7)–(3.8) it easily follows that
{

v̇(2n) = AKv(2n) + 2C∗(y − Cz
(n)
b ),

v̇(2n+1) = AKv(2n+1) − 2 RτC
∗(y − Cz

(n+1)
b ).

The alternative algorithm consists of solving the above
equations forward in time, using the homogeneous initial
conditions (3.11). Asz(n)

b can be expressed by (3.12) in
terms of v(k) for k ≤ 2n − 1, we can compute the
sequencesv(2n) and v(2n+1) recursively. We can obtain an
approximation ofz0 by truncating the series in (3.13). The
above alternative algorithm has been proposed in Phung and
Zhang [21] in the case of a Kirchhoff plate equation with
distributed observation, so that theirC is bounded fromX
to Y .

IV. A CLASS OF SECOND ORDER SYSTEMS WITH

UNBOUNDED OBSERVATION

In this section we show that our main results can be
applied to a class of second order systems with unbounded
observation operators studied, for example, in Weiss and
Tucsnak [32]. Most of the systems modeling the linear
vibrations of elastic systems can be written in the form
described below. Note that the class of systems discussed
in this section are not time reversible, in general.

First we introduce some notation. LetH be a Hilbert
space, and letA0 : D(A0) → H be a strictly positive
operator. We introduce the scale of Hilbert spacesHα,
α ∈ R, as follows: for everyα ≥ 0, Hα = D(Aα0 ), with
the norm ‖ϕ‖α = ‖Aα0ϕ‖H . The spaceH−α is defined
by duality with respect to the pivot spaceH as follows:
H−α = H ′

α for α > 0. Equivalently,H−α is the completion
of H with respect to the norm‖ϕ‖−α =

∥

∥A−α
0 ϕ

∥

∥

H
. The

operatorA0 can be extended (or restricted) to eachHα, such
that it becomes a bounded operator

A0 : Hα→Hα−1 ∀ α ∈ R . (4.1)

Let C0 ∈ L(H 1

2

, Y ), whereY is another Hilbert space.
We identify Y with its dual, so thatY = Y ′. We denote
B0 = C∗

0 , so thatB0 ∈ L(Y,H
−

1

2

).
Consider the system described by

d2

dt2
q(t) +A0q(t) + γB0

d

dt
C0q(t) = 0 , (4.2)

G. Weiss et al. • Observers for DPS Back and Forth in Time 

1432



y(t) =
d

dt
C0q(t) , (4.3)

where γ ≥ 0 is a constant andt ∈ [0,∞) is the time.
The equation (4.2) is understood as an equation inH

−
1

2

(i.e., all the terms are inH
−

1

2

). Here, q stands for the

displacement field and the termγB0
d

dt
C0q(t), informally

written asγB0C0q̇(t), represents a viscous damping. The
statez(t) of this system and its state spaceX are defined
by

z(t) =

[

q(t)
q̇(t)

]

, X = H 1

2

×H .

It is easy to verify that the equations (4.2), (4.3) are equiv-
alent to the following system of first order equations:

{

ż(t) = A(γ)z(t) ,
y(t) = Cz(t) ,

(4.4)

where

A(γ) =

[

0 I

−A0 −γB0C0

]

, (4.5)

D(A(γ)) =

{[

ϕ

ψ

]

∈ H 1

2

×H 1

2

∣

∣

∣

∣

A0ϕ+ γB0C0ψ ∈ H

}

,

(4.6)

C : D(A(γ)) → Y , C = [0 C0 ] . (4.7)

It is well known thatA(0) generates a unitary group inX
(see, for instance, [28, Proposition 3.8.7]). For everyγ > 0
the operatorA(γ) generates a semigroup of contractions (see,
for instance, [32, Proposition 5.1]). It is not difficult to check
that the adjoint ofA(γ) is given by

D(A(γ)∗) =

{

[ ϕ
ψ

]

∈ H 1

2

×H 1

2

∣

∣

∣

∣

A0ϕ− γB0C0ψ ∈ H

}

(4.8)

A(γ)∗ =

[

0 −I
A0 −γB0C0

]

. (4.9)

The result below shows that the results in Section II can be
applied to the system (4.4).

Proposition 4.1:With the above notation, assume that
A(1) is the generator of an exponentially stable semigroup
T
K on X . Then for everyγ ≥ 0, the pair (A(γ), C) is

estimatable and backward estimatable. The corresponding
output injection operators are

H =

[

0
(γ − 1)B0

]

, Hb =

[

0
−(γ + 1)B0

]

. (4.10)

Proof. Let X−1,1 be the dual ofD (A(1)∗) with respect
to the pivot spaceX . In this proof, inner products inH or
in Y will not have subscripts, the others will. In order to
show that(A(γ), C) is estimatable, we prove below that the
relation

A(1)z = A(γ)z +HCz ∀ z ∈ D(A(γ))

holds inX−1,1. Let z =
[ ϕ
ψ

]

∈ D(A(γ)) andφ =
[

ξ
η

]

∈
D ((A(1))∗). Using (4.5), (4.6), (4.8) and (4.9) we get

〈z, (A(1))∗φ〉X − 〈Cz,H∗φ〉 = 〈A
1

2

0 ϕ,A
1

2

0 η〉

+ 〈ψ,A0ξ −B0C0η〉 − (γ − 1)〈C0ψ,C0η〉

= − 〈A0ϕ, η〉H
−

1

2

,H 1

2

+ 〈A
1

2

0 ψ,A
1

2

0 ξ〉

− 〈C0ψ,C0η〉 − (γ − 1)〈C0ψ,C0η〉

= 〈A
1

2

0 ψ,A
1

2

0 ξ〉−〈A0ϕ, η〉H
−

1

2

,H 1

2

−γ〈B0C0ψ, η〉H
−

1

2

,H 1

2

.

Sincez ∈ D(A(γ)), it follows that

〈z, (A(1))∗φ〉X − 〈Cz,H∗φ〉 = 〈A
1

2

0 ψ,A
1

2

0 ξ〉

− 〈A0ϕ+ γB0C0ψ, η〉 = 〈A(γ)z, φ〉X .

According to Definition 2.1, the above formula implies that
the pair (A(γ), C) is estimatable with the output injection
operatorH given by (4.10).

Let Xd
−1,1 be the dual ofD(A(1)) with respect to the

pivot spaceX . In order to show that(A(γ), C) is backward
estimatable we prove below that the relation

A(1)∗z = −A(γ)z +HbCz ∀ z ∈ D(A(γ)),

holds inXd
−1,1. Let z =

[ ϕ
ψ

]

∈ D(A(γ)) andφ =
[

ξ
η

]

∈
D(A(1)). Using (4.5), (4.6), (4.8) and (4.9), we get

〈z,A(1)φ〉X − 〈Cz,H∗

b φ〉 = 〈A
1

2

0 ϕ,A
1

2

0 η〉

− 〈ψ,A0ξ +B0C0η〉 + (γ + 1)〈C0ψ,C0η〉

= 〈A0ϕ, η〉H
−

1

2

,H 1

2

− 〈A
1

2

0 ψ,A
1

2

0 ξ〉

− 〈C0ψ,C0η〉 + (γ + 1)〈C0ψ,C0η〉

= 〈A
1

2

0 (−ψ), A
1

2

0 ξ〉 + 〈A0ϕ, η〉H
−

1

2

,H 1

2

+ γ〈B0C0ψ, η〉H
−

1

2

,H 1

2

.

Sincez ∈ D(A(γ)), it follows that

〈z, (A(1))∗φ〉X − 〈Cz,H∗

bφ〉 = 〈A
1

2

0 (−ψ), A
1

2

0 ξ〉

+ 〈A0ϕ+ γB0C0ψ, η〉 = − 〈A(γ)z, φ〉X .

According to Definition 2.1, the above formula implies that
the pair(−A(γ), C) is estimatable, with the output injection
operatorHb given by (4.10).

By combining the last result and Proposition 3.9 we obtain
an algorithm to estimate the initial state of the system
(4.2)–(4.3). More precisely, for everyn ≥ 0 we define the
sequences(q(n)) and (q

(n)
b ) by











q̈(n)(t) +A0q
(n)(t) +B0C0q̇

(n)(t) = (1 − γ)B0y,

q(n)(0) = q
(n−1)
b (0) for n ≥ 1, q

(0)
b (0) = w0,

q̇(n)(0) = q̇
(n−1)
b (0) for n ≥ 1, q̇

(0)
b (0) = w1,

(4.11)










q̈
(n)
b (t) +A0q

(n)
b (t) −B0C0q̇

(n)
b (t) = − (1 + γ)B0y,

q
(n)
b (τ) = q(n)(τ),

q̇
(n)
b (τ) = q̇(n)(τ).

(4.12)
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Herew0 ∈ H 1

2

andw1 ∈ H are arbitrary initial guesses for
q0 andq1.

Recall from Proposition 4.1 thatTK denotes the semi-
group generated byA(1). From Proposition 3.9 we obtain
the following:

Corollary 4.2: Assume thatTK is exponentially stable
and letτ > 0 be such that‖T

K
τ ‖ < 1. Denoteα = ‖T

K
τ ‖4.

Then for alln ∈ N,
∥

∥

∥
q
(n)
b (0) − q(0)

∥

∥

∥

2

1

2

+
∥

∥

∥
q̇
(n)
b (0) − q̇(0)

∥

∥

∥

2

H

≤ αn+1
(

‖w0 − q(0)‖
2
1

2

+ ‖w1 − q̇(0)‖
2
H

)

.

The second example in the journal version of this paper
shows that the above abstract setting can be applied to a
system described by the wave equation in a domainΩ ⊂ R

n

with velocity observation on a part of the boundary.
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