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Abstract— This paper extends the technique for stability
analysis of time-delay systems based on the operator Lya-
punov inequalities about (fast-lifted) monodromy operators
by establishing a numerical method for solving the operator
Lyapunov inequalities. First, quasi-finite-rank approximation
is applied to the fast-lifted monodromy operator, and an
operator Lyapunov inequality is considered with respect to the
resulting approximated operator. Then, a numerically tractable
method is developed for finding a solution to the approximated
operator Lyapunov inequality out of a special class of operators
that is known to be nonconservative (with respect to the
original operator Lyapunov inequality before quasi-finite-rank
approximation) as long as the fast-lifting parameter N is large
enough. The above special class is described by two finite-
dimensional matrices, and thus solving the operator Lyapunov
inequality amounts to solving a finite-dimensional LMI. In
particular, due to the discrete-time viewpoint intrinsic to the
(fast-lifted) monodromy operator approach, the resulting LMI
is a discrete-time one, which is suitable for extension to the
case with discrete-time controllers. A method is also provided
to confirm that the solution to the approximated operator
Lyapunov inequality does solve the original operator Lyapunov
inequality. Furthermore, it is shown that the overall procedure
gives an asymptotically exact numerical method for stability
analysis of time-delay systems. A numerical example illustrating
the arguments of the paper is also given. A brief sketch
is also provided on the extension to the use of generalized
hold and sampling operators JHk and JSk based on Legendre
polynomials.

I. INTRODUCTION

Stimulated by the study in [1], we have developed in our
recent studies [2],[3] a fundamental framework for dealing
with time-delay systems, which we call a monodromy op-
erator approach. In particular, we considered the feedback
system in Fig. 1, denoted by Σ , consisting of the finite-
dimensional linear time-invariant (FDLTI) system F and the
pure delay H , where F has the state-space representation
dx

dt
= Ax+Bu, y = Cx+Du (1)

with A ∈ R
n×n, B ∈ R

n×µ, C ∈ R
µ×n and D ∈ R

µ×µ,
and the input-output relation of the pure delay H is given
by u(t) = y(t− h), h > 0. By introducing the monodromy
operator T associated with Σ and then taking a positive
integer (fast-lifting parameter) N to introduce the fast-lifted
monodromy operator TN , we have related the exponential
stability of Σ to an operator Lyapunov inequality with
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respect to T (or TN ). In particular, we have introduced
a special class PN of operators described by two finite-
dimensional matrices P and Π (see (14)), and showed that
a solution to the operator Lyapunov inequality exists within
that class whenever Σ is exponentially stable, as long as
N is large enough. While the studies in [2],[3] are thus
devoted to a theoretical side of the monodromy operator
approach to time-delay systems (TDS), this paper extends
the studies so that the operator Lyapunov inequality can be
solved numerically, and establishes a numerical method for
dealing with the stability of TDSs.

The contents of this paper are as follows. In Section II,
we review the preliminary results developed in [2],[3] re-
garding the stability analysis of Σ via the monodromy
operator approach as well as the fast-lifting technique [4]–
[6]. Roughly speaking, we recall that the stability analysis
problem of Σ reduces to finding P ∈ PN such that the
operator Lyapunov inequality T∗

NPTN ≺ P holds with
respect to the fast-lifted monodromy operator TN . Even
though it has been established theoretically that whenever
Σ is stable, such a solution P does exist provided that N is
large enough [2],[3], it has not been discussed how to find
such P numerically. To facilitate the numerical computation
for finding P, Section III introduces what we call quasi-
finite-rank approximation TNX of TN by applying a recent
technique developed for sampled-data systems [7], and gives
a theoretical approach to solving the operator Lyapunov
inequality approximately by dealing with TNX instead of
TN . Furthermore, a method is provided that confirms if the
approximate solution indeed solves the original inequality
without quasi-finite-rank approximation. It is further dis-
cussed that such a “two-stage approach” to stability analysis
of Σ is ensured to be asymptotically exact (i.e., whenever
Σ is stable, a solution to the operator Lyapunov inequal-
ity can indeed be found also numerically in such a way)
as N is increased, provided that some appropriate steps
are followed in the two-stage procedure. Carrying out the
overall procedure numerically involves the optimization of
the matrices P and Π involved in P ∈ PN , together with
the computations of ‖S‖ and ‖S−1‖, where S denotes the
square root of P. Section IV gives methods for reducing the
optimization of P and Π and the computations of ‖S‖ and
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Fig. 1. Feedback system Σ with delay H.
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‖S−1‖ to finite-dimensional ones. In particular, we show that
all the associated computations can be reduced to discrete-
time LMIs despite the fact that the system Σ we deal with is
a continuous-time system. This leads to an important feature
of our approach that it can readily be extended also to
the case with discrete-time controllers. Section V gives a
numerical example illustrating the arguments of the paper.
Section VI gives a brief sketch on the extension to the use
of generalized hold and sampling operators studied in [3] to
extend the class PN .

We use the following notation in this paper. R and
N denote the sets of real numbers and positive integers,
respectively. Km is a shorthand notation for the Hilbert space
(L2([0, h); R))m with an underlying h > 0. The symbol
⊗ denotes the Kronecker product of matrices, and for a
matrix (·), we use the shorthand notations I(·), O(·) and (·)
to mean diag[I, (·)], diag[0, (·)], and IN ⊗ (·), respectively.
These notations are also used in a parallel fashion for an
operator, too. G1 � G2 (or G2 ≺ G1) means that G1 − G2

is a strictly positive-definite operator [2],[3].

II. REVIEW ON MONODROMY OPERATOR AND
OPERATOR LYAPUNOV INEQUALITY

In this section, we review the preliminary results derived
in [2],[3] regarding the stability analysis of Σ via the
(fast-lifted) monodromy operator and the associated operator
Lyapunov inequality.

We first introduce the matrixAd ∈ R
n×n and the operators

B : Kµ → R
n, C : R

n → Kµ and D : Kµ → Kµ defined by

Ad = exp(Ah) (2)

Bf =

∫ h

0

exp(A(h− τ))Bf(τ)dτ (3)

(Cv)(θ) = C exp(Aθ)v (4)

(Df)(θ) = ((D0 +D)f)(θ)

=

∫ θ

0

C exp(A(θ − τ))Bf(τ)dτ +Df(θ) (5)

and the monodromy operator of the system Σ defined by

T =

[
Ad B
C D

]

: M → M (6)

where M := R
n ⊕Kµ. Roughly speaking, T represents the

discrete-time transition of the state [x(kh)T , u(kh + ·)T ]T

of the system Σ (note that u(kh + τ), 0 ≤ τ < h is not
an input of Σ any more, but is a part of the state of Σ that
has no external input). To follow the “pseudo-discretization”
treatment of T developed in [2],[3], we take a positive integer
N and consider the fast-lifting LN : Kµ → (K′

µ)
N [4]–[6],

where K′
µ denotes the Hilbert space Kµ with h replaced

by h′ := h/N . Under the notation I(·) = diag[I, (·)] for
an operator (·), the fast-lifted monodromy operator of the
system Σ is given by

TN = I(LN )T I(LN )−1 =:

[
Ad BN
CN DN

]

:

M′
N → M′

N (7)

where M′
N is a shorthand notation for R

n ⊕ (K′
µ)
N . Re-

garding the representation (7), we have
BN =

[
(A′

d)
N−1B′ · · · A′

dB′ B′
]

(8)

CN =








C′

C′A′
d

...
C′(A′

d)
N−1








(9)

DN =









D′ 0 · · · 0

C′B′ D′ . . .
...

...
. . . . . . 0

C′(A′
d)
N−2B′ · · · C′B′ D′









(10)

D′ = D′
0 +D : K′

µ → K′
µ (11)

where A′
d, B′, C′, D′ and D′

0 are defined as Ad, B, C, D and
D0, respectively, with h replaced by h′.

It has been shown in [2],[3] that Σ is exponentially
stable if and only if there exists a solution P � 0 to the
following operator Lyapunov inequality about the fast-lifted
monodromy operator TN :

T∗
NPTN ≺ P (12)

It has been further shown that whenever Σ is exponentially
stable, such a solution P can actually be found within some
easily tractable class of operators described by two finite-
dimensional matrices P and Π . To describe the details, we
first need to recall the following definition of the operators
JS0 : K′

µ → R
µ and JH0 : R

µ → K′
µ:

JS0f =
1√
h′

∫ h′

0

f(θ′)dθ′,

(JH0v)(θ
′) =

1√
h′
v, 0 ≤ θ′ < h′ (13)

We then have JH0 = J∗
S0, and JS0JH0 = I on R

µ. Under
this notation, it was shown in [2],[3] that, provided that N is
large enough, Σ is exponentially stable if and only if there
exists a solution P to the operator Lyapunov inequality (12)
with the form

P = diag[I, JH0, · · · , JH0
︸ ︷︷ ︸

N

]P diag[I, JH0, · · · , JH0
︸ ︷︷ ︸

N

]∗

+diag[0,Π , · · · ,Π
︸ ︷︷ ︸

N

] (14)

where P := (Pij)
N
i,j=0 ∈ R

(n+µN)×(n+µN) and Π ∈ R
µ×µ

are matrices such that
P + diag[0,Π , · · · ,Π ] > 0, Π > 0 (15)

It should be noted that (15) is a necessary and sufficient
condition for P � 0. The class PN is defined as the set of
operators P satisfying (14) and (15).

III. QUASI-FINITE-RANK APPROXIMATION OF
FAST-LIFTED MONODROMY OPERATOR AND STABILITY

ANALYSIS BY SCALING

As we have summarized the idea developed in our recent
studies [2],[3] in the above, the stability analysis problem
reduces to finding P ∈ PN (and thus P � 0 by definition)
such that T∗

NPTN ≺ P. The operator D involved in T,
however, is always an infinite-rank operator (if we rule out
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the trivial case when the FDLTI system F is zero), and
this is the case also for the operator D′ that appears in
DN in the definition of TN . Hence, TN also has infinite
rank, which generally makes it hard to find P ∈ PN such
that T∗

NPTN ≺ P. This paper is devoted to resolving this
issue by reducing the problem to a finite-dimensional convex
one and thus giving a numerically tractable procedure for
stability analysis. We also establish that the analysis method
developed here is asymptotically exact as N tends to infinity.
More precisely, whenever Σ is stable, we can confirm the
stability of Σ numerically with a finite N that is large
enough.
A. Quasi-Finite-Rank Approximation and Stability Analysis
by Scaling

To facilitate numerical computations for the solution P, we
consider approximating TN with a more tractable operator.
More specifically, we approximate the compact operator
D′

0 = D′ − D by the finite-rank operator C′XB′ with a
matrix X ∈ R

n×n and denote the approximation error by
E′
X = D′

0 − C′XB′. Then we define the operator TNX ,
which approximates the fast-lifted monodromy operator TN
by replacing the operators D′ in the diagonal entries of DN

(see (10)) with C′XB′ +D. That is, we define

TNX =

[
I 0

0 C′

][
Ad BdN
CdN DdN

] [
I 0

0 B′

]

+

[
0 0
0 D

]

(16)

with

BdN =
[
(A′

d)
N−1 · · · A′

d I
]
, CdN =








I
A′
d

...
(A′

d)
N−1







,

DdN =









X 0 · · · 0

I X
. . .

...
...

. . . . . . 0
(A′

d)
N−2 · · · I X









(17)

and B′ = diag[B′, · · · ,B′], C′ = diag[C′, · · · ,C′] and
D = diag[D, · · · , D]; we henceforth use the notation (·)
to denote N copies of (·) given by diag[(·), · · · , (·)] for
an operator or matrix (·). We refer to TNX as quasi-finite-
rank approximation of TN since the first term on the right
hand side of (16) is a finite-rank operator while the second
term is an infinite-rank multiplication operator. Defining
ENX = diag[0,E′

X ], we have TN = TNX + ENX .
Obviously, it is important to evaluate the effect of quasi-

finite-rank approximation on the stability analysis of Σ .
To facilitate such treatment, here we introduce the (strictly
positive-definite) square root S of P, and consider the scaling
approach given in [3]; the class of S = S∗ � 0 such that
S∗S = P ∈ PN is denoted by SN (although SN is in fact
identical with PN , referring to SN would be often helpful to
stress that the arguments are about S rather than P). We will
also use the notation PN and SN for P and S, respectively,
when we wish to stress that P ∈ PN and S ∈ SN .

Note that P ∈ PN solves the operator Lyapunov inequality
with respect to the quasi-finite-rank approximation TNX ,
i.e., T∗

NXPTNX ≺ P, if and only if TNX scaled with S is
contractive, i.e., ‖STNXS−1‖ < 1. In view of this, suppose
that we have an operator S ∈ SN such that

‖STNXS−1‖ ≤ α0 (18)

for some α0 > 0. Since we have
‖STNS−1‖ ≤ ‖STNXS−1‖ + ‖SENXS−1‖

≤ α0 + ‖S‖ · ‖S−1‖ · ‖E′
X‖ (19)

it follows that if α0 + ‖S‖ · ‖S−1‖ · ‖E′
X‖ < 1, then we

have T∗
NPTN ≺ P and thus the exponential stability of Σ is

ensured even though we only took the solution P = S∗S with
respect to the quasi-finite-rank approximation TNX (rather
than the original TN ).

Note that the above arguments are successful by consider-
ing S ∈ SN instead of P ∈ PN ; it would not be easy, without
referring to S, to have an (only modestly conservative)
sufficient condition under which T∗

NXPTNX ≺ P implies
T∗
NPTN ≺ P. This is why we introduce the scaling treatment

with S for the arguments in this section, so that we can deal
only with the scalar inequalities (18) and α0 + ‖S‖ · ‖S−1‖ ·
‖E′

X‖ < 1. In the following arguments, however, we will
also keep referring to P whenever we talk about operator
Lyapunov inequalities.

By summarizing the above arguments, we arrive at the
following procedure for the stability analysis of Σ :
(i) Fix a positive integer N (=: Ne). Determine X with

which D′
0 is approximated by C′XB′, and compute the

approximation error ‖E′
X‖ = ‖D′

0 − C′XB′‖.
(ii) For TNX associated with X determined in (i), minimize

α = ‖STNXS−1‖ with respect to S ∈ SN .
(iii) Check if α + ‖S‖ · ‖S−1‖ · ‖E′

X‖ < 1. Exponential
stability of Σ is ensured if this condition holds.

If we observe this procedure, it is reasonable to choose X in
(i) such that ‖E′

X‖ is small. This is a well-studied problem
by now [6],[8],[9] (see also the related arguments in [10]);
(an upper bound of) ‖E′

X‖ can be computed for each fixed
X , and in particular, X (approximately) minimizing ‖E′

X‖
can also be computed.

Hence the remaining problems are how to optimize the
operator S ∈ SN and compute the corresponding α in (ii),
and how to compute the condition number κ(S) := ‖S‖ ·
‖S−1‖. These problems can actually be reduced to finite-
dimensional problems, whose details will be deferred to the
section to follow.

In the remaining part of this section, we aim at giving
some remarks to show that the above procedure can give
an asymptotically exact method for stability analysis as
N → ∞. More precisely, whenever Σ is stable, we can
confirm its stability numerically with some finite fast-lifting
parameter N if it is large enough. To confirm this claim, we
first recall that as N → ∞, restricting S to belong to SN
(i.e., P to belong to PN ) leads to no loss of generality, as
already established in [2],[3]. We also recall that ‖E′

X‖ can
be made arbitrarily small under a suitable choice of X if
we let N → ∞ [6],[9]. We could thus arrive at the claim
since we can make the term κ(S)‖E′

X‖ in (iii) tend to zero
as N → ∞ and thus the condition therein virtually reduces
to α < 1 with respect to the optimization problem in (ii).

Rigorously speaking, however, we need one more step to
establish the claim, since S ∈ SN is obtained by solving
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an optimization problem in (ii) that depends on N and thus
S is also dependent on N . Thus, it could be the case that
the sequence of κ(S) for optimal S diverges as N → ∞
in Step (iii). To get around the difficulties related to such
possibilities, we can slightly modify the above procedure
as follows. That is, we take N = Ne in Step (i) and
then proceed to (ii) to get S = SNe

. For this S, simply
following Step (iii) would lead us to the process of checking
the inequality α + κ(S)‖E′

X‖ < 1. However, it should be
noted that this inequality is only a sufficient condition for
(
STNe

S−1
)∗ STNe

S−1 ≺ I for the given S, or equivalently
for T∗

Ne
PTNe

≺ P for P = S∗S � 0, and thus we have a
chance to apply a less conservative sufficient condition. The
modified step we will follow (if the condition in (iii) fails)
is indeed to consider an alternative sufficient condition, as
will be summarized as Step (iv) later. The ideas leading to
such a step, as well as the asymptotic exactness of stability
analysis ensured by following the step, will be explained in
the following subsection.

B. Asymptotic Exactness of Stability Analysis by Scaling
The key idea is to take a positive integer ν ≥ 2 and then

repeat Step (i) with N = νNe (hence we obtain a new X for
N = νNe, where we hope that the associated new ‖E′

X‖,
denoted by ‖E′

X,ν‖, would become smaller compared with
the case of N = Ne). Basically, we once again apply Step
(iii) under the new N (= νNe) and new X , together with
“the same S” as that obtained in Step (ii). Regarding the
loose wording “the same S,” however, it should be noted
that the underlying domain M′

N of the scaling operator S
changes actually with ν (since the domain depends on N =
νNe). Thus, “the same S” should actually mean embedding
the operator S = SNe

on M′
Ne

to an equivalent operator
on M′

νNe
; the latter equivalent operator will be denoted by

S↑ν (= S↑ν
Ne

). More precisely, S↑ν is defined as

S↑ν := I
(

L′
ν

)

S I
(

L′
ν

)−1

= I
(

L′
ν

)

S I
(

L′
ν

)∗

(20)

where L′
ν denotes the fast-lifting operator with the fast-lifting

parameter ν defined on the interval [0, h′) = [0, h/Ne). The
associated P↑ν , which corresponds to an operator equivalent
to P under the introduction of ν, is given by P↑ν =

(S↑ν)∗S↑ν = I
(

L′
ν

)

P I
(

L′
ν

)∗

.
Here, let us introduce K′′

m, which is given by K′
m with

the underlying h′ replaced by h′′ := h′/ν (= h/(νNe)).
We further introduce J′

H0 : R
m → K′′

m and J′S0 := (J′H0)
∗

defined by replacing h′ in JH0 and JS0 by h′′. Then, it is
easy to see that

L′
νJH0 =

1√
ν

[I, · · · , I
︸ ︷︷ ︸

ν

]T J′
H0

= diag[J′H0, · · · , J′H0
︸ ︷︷ ︸

ν

]




1√
ν

[I, · · · , I
︸ ︷︷ ︸

ν

]T





=: diag[J′H0, · · · , J′H0
︸ ︷︷ ︸

ν

]H ′
ν (21)

It is also obvious that L′
νΠ (L′

ν)
−1 = Iν ⊗ Π . Hence, it

follows from (14) that P↑ν = I
(

L′
ν

)

P I
(

L′
ν

)∗

can be

described as

P↑ν = diag[I, J′
H0, · · · , J′H0

︸ ︷︷ ︸

ν

]P ↑νdiag[I, J′
H0, · · · , J′

H0
︸ ︷︷ ︸

ν

]∗

+diag[0,Π ↑ν ] (22)

where

P ↑ν = I
(
H ′
ν

)
P I

(
H ′
ν

)T
(23)

Π
↑ν = Iν ⊗ Π (24)

This in particular implies that P↑ν
Ne

∈ PνNe
. That is, P↑ν

can be handled within our special class PN , and similarly
for S↑ν . It is also obvious that we are led to the following
result.

Proposition 1: Suppose ν ∈ N. P ∈ PNe
satisfies (12)

with N = Ne if and only if T∗
νNe

P↑νTνNe
≺ P↑ν .

Furthermore, P↑ν � 0 if and only if P � 0, and also
κ(P↑ν) = κ(P) holds, where κ(·) denotes the condition
number.

It is also obvious that κ(S) = κ(S↑ν). This implies that
in the modified procedure suggested in the beginning of
this subsection by introducing ν (i.e., that based on S↑ν

equivalent to S), the condition number κ(S↑ν) never grows
with ν but stays the same as κ(S), while ‖E′

X,ν‖ can be
made arbitrarily small by letting ν → ∞. That is, the term
κ(S↑ν)‖E′

X,ν‖ (which we would have in the condition in
Step (iii) modified by the introduction of ν) can be made
arbitrarily small by letting ν → ∞, and thus the possible
problem raised in the preceding subsection (about the be-
havior of κ(S)‖E′

X‖ as N gets larger) can be circumvented
by the introduction of ν for each fixed N = Ne. In other
words, we can claim that if the operator S determined in Step
(ii) (under a fixed integer N = Ne) leads to P = S∗S that
satisfies the operator Lyapunov inequality (12) (rather than
T∗
NXPTNX ≺ P that is obviously satisfied if α < 1), then

the feasibility of (12) by this P can indeed be established
numerically, by taking large enough ν and checking the
condition αν + κ(S)‖E′

X,ν‖ < 1 (where the methods for
computing αν := ‖S↑νTNX(S↑ν)−1‖ with N = νNe and
κ(S) numerically are the topics in the following section, i.e.,
Subsections IV-A and IV-B, respectively).

For the sake of full rigor, however, we must call further
attention to the following fact, before we can conclude that
taking ν large enough makes it possible to judge if P = S∗S
indeed solves (12) under the S obtained in Step (ii): the first
term αν in the above condition αν + κ(S)‖E′

X,ν‖ < 1 also
depends obviously on ν. Fortunately, the dependence of αν
on ν does not cause any problem because, when N = νNe,

‖TN − TNX‖ = ‖ENX‖ = ‖E′
X,ν‖ → 0 (ν → ∞) (25)

under the choice of X that we consider here [6],
[8],[9], and thus αν = ‖S↑νTNX(S↑ν)−1‖ =

‖S I
(

L′
ν

)−1

TNXI
(

L′
ν

)

S−1‖ is convergent as ν → ∞ (to

‖SNe
I
(

L′
ν

)−1

TνNe
I
(

L′
ν

)

S−1
Ne

‖ = ‖SNe
TNe

S−1
Ne

‖).
To summarize the above arguments, we are led to the

following step to be taken if the condition in Step (iii) fails.
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(iv) Take a positive integer ν ≥ 2, let N = νNe, and repeat
Step (i) for this new N to get new X and the associated
new approximation error ‖E′

X,ν‖. Construct the operator
S↑ν from S, and compute αν = ‖S↑νTNX(S↑ν)−1‖
for the new TNX . Check if αν + κ(S)‖E′

X,ν‖ < 1.
Exponential stability of Σ is ensured if this condition
holds.

Following Step (iv), we can virtually check the existence
of the Lyapunov solution P = S∗S ∈ PN to (12), in
principle (by taking large enough ν). Since this is true for
each fixed N = Ne, the approach developed here gives an
asymptotically exact stability analysis method for Σ (even
though the discussions on numerically finding an appropriate
S ∈ SN in Step (ii) and computing the condition number
κ(S) and so on have not been completed and are still
deferred to the following section). More precisely, whenever
Σ is exponentially stable, this method can always prove it
numerically by taking a finite N (and then ν) sufficiently
large.

Remark 1: We once again summarize and emphasize
some important points in the above arguments. In the above
procedure, approximate minimization of ‖STNS−1‖ is car-
ried out with respect to S ∈ SN by (exactly) minimizing
‖STNXS−1‖ instead under the quasi-finite-rank approxima-
tion TNX of TN at the parameter N = Ne. The resulting
“approximately optimal” S with respect to TN , however, may
not be close enough to “actually optimal” S in SN at the
parameter N = Ne due to the optimization only with the
approximated operator TNX rather than TN . However, since
we will eventually use the quasi-finite-rank approximation at
N = νNe at the same time if we are to take Step (iv), it
might sound reasonable to optimize S ∈ SN at the parameter
N = νNe rather than N = Ne (so that the side effect of
approximation can be reduced and S that is “closer to exact
optimality” can hopefully be obtained). It should be recalled,
however, that it is what we have avoided since the resulting
κ(S) might then diverge as N → ∞, in which case the
analysis might get spoiled. This is why we have given a sort
of two-stage procedure as above by taking ν. To make a
compromise between positive and negative sides of making
N larger, however, we could alternatively consider a “one-
stage” procedure, in which we take N = νNe in Step (i),
(exactly) optimize ‖STNXS−1‖ with respect to S = S↑ν

Ne
for

some SNe
∈ SNe

, and then follow Step (iii). Restricting to
the class {S↑ν

Ne
| SNe

∈ SNe
} has an advantage of reducing

the number of variables in the LMI problem derived in the
following section regarding the optimization of P = S∗S,
and thus can contribute also to keeping the computational
load to within a reasonable amount.

IV. REDUCTION TO FINITE-DIMENSIONAL
DISCRETE-TIME LMI CONDITION

By summarizing the preceding arguments, we can say
that we have given an approach to solving the operator
Lyapunov inequality T∗

NPTN ≺ P approximately and then
confirming if the approximate solution indeed solves the
inequality. This process involves the optimization of P (or S

such that S∗S = P) and the computations of ‖S‖ = ‖P‖1/2

and ‖S−1‖ = ‖P−1‖1/2. This section gives methods for
reducing these computations to finite-dimensional ones. The
optimization of P has a lot common with the recent devel-
opment in the theory of sampled-data systems, in particular,
modified fast-sample/fast-hold approximation and noncausal
linear periodically time-varying scaling [4]–[7],[11]. On the
other hand, the computations of ‖P‖ and ‖P−1‖ get different
from the corresponding computations in the sampled-data
setting due to different and more complicated structure of P
that involves a “compact part.”

A. Computations of ‖S‖ and ‖S−1‖
It follows readily from the arguments in Appendix of [3]

that ‖S−1‖ can be computed with a bisection method as the
infimum of γ > 0 such that
γ2

Π − I > 0, γ2(P + diag[0,Π ]) − I > 0 (26)

In a similar fashion, we can easily show that ‖S‖ can be
computed with a bisection method as the infimum of γ > 0
such that
γ2I − Π > 0, γ2I − (P + diag[0,Π ]) > 0 (27)

B. Optimization of P
We give a method for finding S ∈ SN (or the associated

matrices P and Π ) that minimizes α = ‖STNXS−1‖. We
introduce

K1 =

[
I 0

0 C′

]

, K2 =

[
I 0

0 B′

]

,

Ξ =

[
Ad BdN
CdN DdN

]

, K = K1Ξ K2 (28)

so that TNX given by (16) can be rearranged as TNX =
K+O(D), where O(·) is a shorthand notation for diag[0, (·)].
Obviously, K is a compact (in fact, finite-rank) operator.
Minimizing the above α with respect to S ∈ SN is equivalent
to minimizing α subject to

T∗
NXPTNX ≺ α2P, P ∈ PN (29)

which in turn can be rearranged as

α2P −
(
O(D)∗PO(D) + K∗PO(D)

+O(D)∗PK + K∗PK
)
� 0 (30)

Here we introduce

P0 = I(JH0)P I(JH0)
∗, P1 = O(Π ) (31)

under the notation I(·) = diag[I, (·)]. Note that P0 is a
compact (in fact, finite-rank) operator while P1 is not (i.e.,
a multiplication operator). It follows from (14) that P =
P0 + P1, and substituting it into the first and second P in
(30) leads to an equivalent inequality Y1 − Y0 � 0 with Y0

and Y1 defined by

Y0 = I( 0 ) − α2P0 + O(D)∗P0O(D) + K∗PO(D)

+O(D)∗PK + K∗PK (32)

Y1 = I( 0 ) + α2P1 − O(D)∗P1O(D) = I(Ψα) (33)

where
Ψα := α2

Π −DT
ΠD (34)
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Since Y0 is a compact operator, we can see from (33) that
Y1 − Y0 � 0 only if Ψα > 0. Thus, when we seek for the
solution of (29), we may assume Ψα > 0 without loss of
generality, which in particular implies Y1 � 0. Therefore,
Y1 − Y0 � 0 if and only if I − Y−1/2

1 Y0Y−1/2
1 � 0,

where Y−1/2
1 = I

(

Ψ
−1/2
α

)

. What we do next is to introduce

a factorization Y−1/2
1 Y0Y−1/2

1 = H1H2 with appropriate
compact (in fact, finite-rank) operators H1 and H2. To do
this in the general situation D 6= 0 is highly involved, and
hence we begin with the case D = 0.

1) The case of retarded TDS with D = 0: If we in-
troduce J = [In, 0] : M′

N → R
n and Ω := K∗

1PK1 ∈
R

(n+nN)×(n+nN), we can take H1 and H2 as follows:

H1 = Y−1/2
1

[
J ∗ αI

(
JH0

)
K∗

2Ξ
T
]

(35)

H∗
2 = Y−1/2

1

[
J ∗ −αI

(
JH0

)
P K∗

2Ξ
T
Ω

]
(36)

Since H1H2 is a compact operator, I − H1H2 � 0 if and
only if the eigenvalues of I−H1H2 (and thus I−H2H1) are
all positive. Since Y−1

1 = I
(

Ψ
−1
α

)

, a direct computation of
H2H1 leads to the matrix

H2H1 =







I αJ1

−αPJT1 −α2P I
(

J∗H0Ψ
−1
α JH0

)

ΩΞJT2 αΩΞ I
(

B′
Ψ

−1
α JH0

)

J2Ξ
T

I
(

J∗
H0Ψ

−1
α (B′)∗

)

Ξ
T

ΩΞ I
(

B′
Ψ

−1
α (B′)∗

)

Ξ
T







(37)

where J1 = [I, 0] ∈ R
n×(n+µN) and J2 = [I, 0] ∈

R
n×(n+nN). In view of the above representation, we intro-

duce the matrix factorization
[

J∗
H0

B′

]

Ψ
−1
α

[
JH0 (B′)∗

]

=

[
(Z ′

d)
T

W ′
d

]
(
(Ψα)−1 ⊗ Ip

) [
Z ′
d (W ′

d)
T

]
(38)

Such factorization is ensured to exist by the arguments in
[7] (Lemma 1 therein), with appropriately defined p ∈ N

and matrices W ′
d and Z ′

d that are independent of Ψα; see
[7] for an explicit procedure to determine them. We are now
ready to define the matrices J0 = [I, 0] ∈ R

n×(n+µpN),

H1 = Y
−1/2
1

[

JT0 αI
(

Z ′
d

)

I
(

(W ′
d)
T
)

Ξ
T

]

(39)

HT
2 = Y

−1/2
1

[

JT0 −αI
(

Z ′
d

)

P I
(

(W ′
d)
T
)

Ξ
T
Ω

]

(40)

together with Y1 := I
(
Ψα ⊗ Ip

)
to see that H2H1 = H2H1.

It would be helpful to find some similarity between Hk (k =
1, 2) and Hk (k = 1, 2) to see what we have established
in the above arguments (i.e., a sort of discretization, or
more adequately, precise reduction of operators to finite-
dimensionality).

Since H1H2 is a symmetric matrix, we see that all the
eigenvalues of I −H2H1 = I −H2H1 (and thus I −H1H2)
are positive if and only if I−H1H2 > 0. Hence, combining

all the above arguments, we are led to the conclusion that
(30) holds if and only if Ψα > 0 and I − H1H2 > 0; the
latter inequality holds if and only if

Y1 −
[

JT0 J0 − α2 I
(

Z ′
d

)

P I
(

(Z ′
d)
T
)

+I
(

(W ′
d)
T
)

Ξ
T
ΩΞ I

(

W ′
d

)]

> 0 (41)

Note that Ω admits an affine representation in terms of P
and Π as given in Appendix (see (57)), and that Y1 =

I
(

(α2Π −DTΠD) ⊗ Ip

)

, which is also affine with respect
to Π . Hence, we see that the standing assumption

Ψα = α2
Π −DT

ΠD > 0 (42)

and (41) are both LMIs with respect to P and Π , once we fix
α. Thus, with these two LMIs, together with the LMI (15) for
the strict positive-definiteness of P, we can apply a bisection
method with respect to α to get optimal P and Π (and thus
P) together with the optimal α. It would be helpful to note
some similarity between the original inequality Y1−Y0 � 0
(see (32) and (33) with D = 0), equivalent to (29), and
the derived finite-dimensional inequality (41) to see what we
have established in the above; it corresponds to the reduction
of the infinite-dimensional operator inequality (29) to a finite-
dimensional LMI in an exact fashion. Note that the quasi-
finite-rank approximation TNX of TN , together with the
structure of P ∈ PN , has enabled the exact reduction.

2) The case of neutral TDS with D 6= 0: WhenD 6= 0, the
construction of H1 and H2 and in particular an appropriate
factorization of the matrix H2H1 get highly involved, but
essentially the same arguments can be applied. Tedious
manipulations show that we can arrive at an equivalent
condition to (30) (i.e., Y1 − Y0 � 0) that is in the form

Y1 − Y0 > 0 (43)

where Y0 and Y1 are given by

Y0 = I
(
0µq,µq

)
− α2 I

(

Z ′
d

)

P I
(

(Z ′
d)
T
)

+O
(

DT ⊗ Iq

)

I
(

Z ′
d

)

P I
(

(Z ′
d)
T
)

O
(
D ⊗ Iq

)

+O
(

DT ⊗ Iq

){

I
(

Z ′
d

)

P I
(

(Z ′
d)
T
)

+O
(
Π ⊗ Iq

)}

I
(

V ′
d

)

Ξ I
(

W ′
d

)

+I
(

(W ′
d)
T
)

Ξ
T I

(

(V ′
d)
T
){

I
(

Z ′
d

)

P I
(

(Z ′
d)
T
)

+O
(
Π ⊗ Iq

)}

O
(
D ⊗ Iq

)

+I
(

(W ′
d)
T
)

Ξ
T
ΩΞ I

(

W ′
d

)

(44)

Y1 = I
(

(α2Π −DTΠD) ⊗ Iq

)

(45)

provided that the matrices W ′
d, Z ′

d and V ′
d and q ∈ N are

determined by (58) in Appendix rather than (38), and Ω

represented as (59) rather than (57) is substituted to (44).

V. NUMERICAL EXAMPLE

Let us consider the neutral delay-differential equation
dx

dt
= Ax(t) + (C −DA)x(t − h) +D

dx

dt
(t− h) (46)
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with A = −1/2, C = −1, and D = −1/2. Stability of this
equation can be studied as that of the time-delay system Σ

in Fig. 1 with the FDLTI system F given by the state-space
representation B = 1 and the above A, C and D. By the
Nyquist stability criterion, we can show that Σ is stable for
0 < h < h̄ := Arg{(β1 + jβ2)/(β3 + jβ4)}/ω0, where

β1 = −
√

7/4
√

2, β2 = 5/4
√

2 (47)

β3 =
√

7/2
√

2, β4 = −1/2
√

2, ω0 =
√

7/2 (48)

and Arg(·) denotes the principal value of the argument of a
complex number restricted to (0, 2π]. We consider the case
h = 0.9h̄ ≈ 0.9 × 1.8285 and examine the stability of Σ

with the numerical method developed in this paper.
To this end, we first take N = Ne = 3 in Step (i) in Sec-

tion III, where X is determined to (approximately) minimize
‖E′

X‖ with the one-stage quasi-finite-rank approximation
method in [9]. For the optimal X , we have an upper bound
e′X of ‖E′

X‖ given by e′X = 0.1805. We next proceed to
Step (ii), which corresponds to minimizing α > 0 by solving
the LMIs (15), (42), (43) for P and Π (these are the LMI
conditions for the case D 6= 0). We then have α = 0.8932,
and for the resulting P (and thus S) we can compute ‖S‖
and ‖S−1‖ with (26) and (27) to have κ(S) = 3.4042. Even
though α < 1 and thus Σ is likely to be stable (i.e., the
obtained P � 0 is likely to satisfy (12)), the condition in Step
(iii) cannot be ensured to be fulfilled since α+κ(S)e′X ≥ 1.
Hence we cannot conclude stability of Σ at this stage.

We thus proceed to applying a less conservative stability
condition by introducing the integer ν as in Step (iv) to
confirm that P � 0 obtained in Step (ii) is indeed a solution
to the operator Lyapunov inequality (12) for N = Ne = 3.
Let us take ν = 10 and follow Step (iv); that is, we repeat
Step (i) with N = νNe = 30 to get new X and the
associated ‖E′

X,ν‖ (in fact, its upper bound e′X,ν) given by
e′X,ν = 0.0182. We construct P ↑ν given by (23) where (·)
is with respect to N = Ne, reconstruct the matrices Z ′

d,
W ′
d and V ′

d in (58) with respect to h′ = h/N = h/(νNe),
and consider the LMI (43) with P replaced by P ↑ν where
(·) is with respect to N = νNe. Minimizing α under the
LMI constraint (43) corresponds exactly to the computation
of αν = ‖S↑νTNX(S↑ν)−1‖ with N = νNe required in Step
(iv), and we have αν = 0.9372. The condition in Step (iv)
is now fulfilled since γν := αν + κ(S)e′X,ν = 0.9991 < 1
(taking a larger ν, we can further confirm, e.g., γν < 0.95).
We also remark that also when h = 0.98h̄, taking the
parameters Ne = 5 and ν = 30 leads to (α = 0.9722,
αν = 0.9880 and) γν = 0.9998 < 1.

The above two-stage procedure demonstrates that if P � 0
of the form (14) solves the operator Lyapunov inequal-
ity (12), then we can confirm it numerically by taking ν
sufficiently large. It should be recalled that, as stated in
Section II, there always exists such P � 0 represented by
the matrices P and Π in the form (14), provided that the
fast-lifting parameter N is sufficiently large [2],[3]. Hence,
the numerical method developed in this paper provides an
asymptotically exact stability analysis for time-delay systems
by taking N and ν sufficiently large.

VI. EXTENSION TO THE USE OF MORE GENERAL HOLD
AND SAMPLING OPERATORS JHk AND JSk

The preceding arguments are restricted to the use of the
hold operator JH0 and the sampling operator JS0 = J∗

H0

to construct P as in (14), as originally studied in [2]. In
our recent study [3], the use of more general operators JHk
and JSk = J∗Hk (k ∈ N) has been discussed based on the
Legendre polynomials. Here we give a brief sketch about
how the preceding results can be extended to accommodate
the use of JHk and JSk. A key in the success in the preceding
arguments lies in the reduction of operators to matrices used
in (38) or (58). Behind the feasibility of the reduction is the
fact that JH0 = J∗S0 has a “state-space representation” similar
to C in (4) (or more precisely, similar to C′ and (B′)∗).
Hence, to show that the preceding arguments apply basically
to the case with JHk and JSk, it suffices to show that JHk
also has such a “state-space representation.” Due to the lack
of space, we only state (without proof) that (JHkv)(θ′) =
C ′
Hk exp(A′

Hkθ
′)v, v ∈ R

(k+1)µ, θ′ ∈ [0, h′) for

A′
Hk = (Ψ ′

k)
−1AJkΨ

′
k, C

′
Hk = CJkΨ

′
k (49)

Here, AJk ∈ R
(k+1)µ×(k+1)µ and CJk ∈ R

µ×(k+1)µ are
given by

AJk =

[
0 Ik
0 0

]

⊗ Iµ, CJk = [1 0 · · · 0
︸ ︷︷ ︸

k

] ⊗ Iµ (50)

and Ψ
′
k ∈ R

(k+1)µ×(k+1)µ is an invertible matrix defined by

Ψ
′
k =








ψ′
00 ψ′

10 · · · ψ′
k0

0 ψ′
11 · · · ψ′

k1
...

. . . . . .
...

0 · · · 0 ψ′
kk







⊗ Iµ (51)

where ψ′
ij is determined by rearranging into

∑i
j=0

ψ′

ij

j! (θ′)j

the shifted and normalized Legendre polynomial ψi(θ
′)

introduced in [3], represented as

ψi(θ
′) =

√

2i+ 1

h′
(−1)i

i∑

j=0

(
i

j

)(
i+ j

j

) (

− θ′

h′

)j

(52)

The remaining issue is the representation of P↑ν when
P is represented by (14) with JH0 replaced by JHk (and
thus P ∈ R

(n+(k+1)µN)×(n+(k+1)µN)). We only state that it
is again given by (22) with J′

H0 replaced by J′
Hk, together

with (23) and (24) with H ′
ν replaced by

H ′
ν = H(k)′

ν =








(Ψ ′′
k )−1

(Ψ ′′
k )−1A′′

Jkd
...

(Ψ ′′
k )−1(A′′

Jkd)
ν−1








Ψ
′
k (53)

where A′′
Jkd := exp(AJkh

′′), h′′ := h′/ν = h/(νNe), and
Ψ

′′
k is defined as Ψ

′
k with h′ replaced by h′′.

VII. CONCLUSION

In our recent studies [2],[3], we have developed a funda-
mental framework for dealing with linear time-delay systems.
The fast-lifted monodromy operator played a key role there,
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and an operator Lyapunov inequality was introduced for sta-
bility analysis based on this operator. A class of candidates to
the solutions to the Lyapunov inequality was then introduced,
which is represented by two finite-dimensional matrices P
and Π together with hold and sampling operators JH0 and
JS0, and it was further shown that a solution does exist within
this class whenever the system is stable, provided that the
integer N for fast-lifting is taken sufficiently large.

Following and extending the theoretical advances therein,
the present paper has developed a numerical procedure for
stability analysis. Quasi-finite-rank approximation was first
applied to the fast-lifted monodromy operator, and it was
shown that finding (from the above mentioned candidate
class) a solution to the operator Lyapunov inequality as-
sociated with the operator after approximation reduces to
solving a discrete-time LMI with respect to P and Π . A
method was also provided for confirming that the obtained
LMI solution does solve the operator Lyapunov inequality
with respect to the fast-lifted monodromy operator without
approximation. Thus this paper together with our recent
studies [2],[3] has successfully established an asymptotically
exact method for stability analysis both theoretically and
numerically. A numerical example was also given to illustrate
the arguments of the paper, and a brief sketch was given
about how the method can be extended to the case with
generalized operators JHk and JSk introduced in [3].

As remarked in our recent studies that has provided a
fundamental framework to time-delay systems [2],[3], the
technique can readily be extended to the stability problem for
the situation with a discrete-time controller. Furthermore, the
analysis technique developed in this paper can be extended,
in principle, to dealing with a discrete-time controller de-
sign problem for time-delay systems, and this is the most
important feature of the present new approach.

APPENDIX

Factorization of the Matrix Ω = K∗
1PK1

We give a method for factorizing the matrix Ω = K∗
1PK1

in such a way that the matrices P and Π involved in P are
easily dealt with as optimization parameters. It follows from
(14) that

Ω = diag[I, (C′)∗JH0]P diag[I, (C′)∗JH0]
∗

+diag[0, (C′)∗Π C′] (54)

What we do next depends on whether D = 0 or not, if we are
concerned with the computational load about optimization
of P and Π . When D = 0, we simply introduce the matrix
C ′
d := (JH0)

∗C′, i.e.,

C ′
d :=

1√
h′

∫ h′

0

C exp(Aθ′)dθ′ (55)

As shown in [7], (C′)∗Π C′ can be represented as

(C′)∗Π C′ = (V ′
d)
T (Π ⊗ Ir)(V

′
d) (56)

with some appropriately defined r ∈ N and matrix V ′
d .

Thus, when D = 0, the following representation of Ω =
K∗

1PK1 suffices, in which the matrices P and Π appear in
an affine form.

Ω = I
(

(C ′
d)
T
)

P I
(

C ′
d

)

+ O
(

(V ′
d)
T (Π ⊗ Ir)(V ′

d)
)

(57)

When D 6= 0, however, it is crucial to deal with the two
matrices (C′)∗JH0 and (C′)∗Π C′ at a time for our purpose.
Moreover, we actually have to deal with simultaneously the
left hand side of (38) and other similar operator compositions
involving C′ so that we can arrive at (44) and (45). More
precisely, we introduce the matrix factorization





J∗
H0

B′

(C′)∗



 (·)
[

JH0 (B′)∗ C′
]

=





(Z ′
d)
T

W ′
d

(V ′
d)
T



 ((·) ⊗ Iq)
[
Z ′
d (W ′

d)
T V ′

d

]
(58)

Such factorization is indeed possible with appropriately
defined q ∈ N and matrices W ′

d, V ′
d and Z ′

d (independent
of the matrix (·)) by slightly extending the arguments of
[7]. It follows that (C′)∗JH0 = (V ′

d)
TZ ′

d and (C′)∗Π C′ =
(V ′
d)
T (Π ⊗ Iq)(V ′

d). To summarize, Ω = K∗
1PK1 admits the

following representation, in which the matrices P and Π

appear in an affine form.

Ω = I
(

(V ′
d)
T
){

I
(

Z ′
d

)

P I
(

(Z ′
d)
T
)

+O
(
Π ⊗ Iq

)}

I
(

V ′
d

)

(59)
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