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Abstract— The Mahler measure, a notion often appearing in
the number theory and dynamic system literature, provides a
way to quantify the instability in a linear discrete-time system.

I. INTRODUCTION

Which of the following two first order discrete-time au-
tonomous systems

x(k + 1) = 2x(k) (1)

and
x(k + 1) = 3x(k) (2)

is more unstable? Common sense tells us that system (2)
is more unstable than system (1) since its state diverges to
infinity faster. Which of the following two systems

x(k + 1) =
[

2 1010

0 4

]
x(k) (3)

and

x(k + 1) =




3 2 1
0 3 2
0 0 0.5


x(k) (4)

is more unstable? Now the answer is not so obvious. In this
survey paper, we attempt to give an answer to this question.
We will assign an instability measure to each system, and
also give the historic perspective of, theoretical justification
to, and various ramifications of this instability measure.

Our answer will depend only on the unstable modes of
the systems involved. It has nothing to do with the stable
modes, even the marginally unstable modes, and nothing to
do with other eigenstructure of the system matrices, nothing
to do with the norm of the system matrices.

Much of this study is powered by the recent activities
in networked control systems (NCS) [2], [3], [12], though
related results appeared much earlier in control system
literature, often under the umbrella of fundamental perfor-
mance limitations of feedback control [19]. The study is
also influenced by the first Bode lecture at the 1989 IEEE
Conference on Decision and Control by Gunter Stein [21].

We only examine discrete-time systems in this paper.
Continuous-time systems can be studied in a rather analogous
way.
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II. HISTORY

Consider a polynomial

a(z) = a0z
n + a1z

n−1 + · · ·+ an−1z + an

= a0

n∏

i=1

(z − ri), a0 6= 0,

which has roots r1, r2, . . . , rn. Kurt Mahler in 1960 [16]
defined the so-called Mahler measure

M(a) = |a0|
n∏

i=1

max{1, |ri|} = |a0|
∏

|ri|>1

|ri|.

He also observed by using Jensen’s formula that

M(a) = exp
[

1
2π

∫ 2π

0

ln |a(ejω)|dω

]
.

We will mostly deal with monic polynomials, for which the
Mahler measure depends only on the roots, or more precisely
the unstable roots (i.e., the ones outside of the unit circle),
of the polynomial. Let us extend the definition to a square
matrix A and call M(det(zI − A)) as the Mahler measure
of A, denoted by M(A).

Since Mahler’s definition, there were two related inter-
esting developments. The first is the recognition of its
connection to an optimization problem considered initially
by Gabor Szegö [24], as well as the extension of it. Denote
the unit circle of the complex plain by T. Let f : T→ C be
a measurable function. Then for each p ∈ [0,∞] define the
“p-norm” of f by

‖f‖p =
[

1
2π

∫ 2π

0

|f(ejω)|pdω

]1/p

.

We do not wish to rule out the possibility of p < 1, though
in such cases ‖f‖p does not satisfy the triangle inequality
and hence is not a norm in a strict sense. For p = 0 or ∞,
the above definition does not really work; we actually have

‖f‖∞ = lim
p↗∞

‖f‖p = ess sup
ω∈[0,2π]

|f(ejω)|

and

‖f‖0 = lim
p↘0

‖f‖p = exp
[

1
2π

∫ 2π

0

ln |f(ejω)|dω

]
.

It is easy to see that ‖f‖p is an increasing function of p and
M(a) = ‖a‖0 for each polynomial a.

Theorem 1 ([7]) Let a be a given polynomial. Then

inf
q
‖aq‖p = M(a)
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where the infimum is taken over all monic polynomials q.

Such optimization problems are not exactly the ones
we encounter in systems and control theory, but they are
inspiring. In fact, as we will see later in this paper, quite
many optimization problems in systems and control also have
solutions given by the Mahler measure.

The second development is the connection of the Mahler
measure with the entropy of linear time-invariant (LTI)
autonomous system

x(k + 1) = Ax(k), x(k) ∈ Cn. (5)

There were various efforts in defining an entropy for a
dynamic system to capture the complexity, ergodicity, in-
formation content, or expansion rate of the solutions, for
example, the Kolmogorov-Sinai measure-theoretical entropy
[20] and the topological entropy [1]. It is not until Rufus
Bowen [4] when a metric-theoretical entropy was defined
which can be applied to an LTI autonomous system. Bowen
still named his quantity the topological entropy. We choose
not to repeat the wordy definition of Bowen here and refer
the readers to [4] and textbooks [10], [14] for details. Let
us denote the Bowen’s entropy of LTI system (5) by h(A).
Bowen established the following connection.

Theorem 2 ([4])

h(A) = ln M(A).

The main message of this paper is that either M(A) or
h(A) can be used to measure the instability of a system
in the form of (5). Using such a measure, we are able to
answer the questions raised in Section I. System (4) which
has M(A) = 9 is more unstable than system (3) which has
M(A) = 8.

III. JUSTIFICATIONS I – SINGLE-INPUT SYSTEMS

Let us first consider a minimum energy control problem,
illustrated in Figure 1. Here the block marked with [A|B] is
a state space system

x(k + 1) = Ax(k) + Bu(k). (6)

In this section, we consider only the single-input case. In
this case, B is a column vector. We assume that [A|B] is
stabilizable. The controller F is a constant feedback gain. It
is said to be stabilizing if A + BF is stable, i.e., having all
eigenvalues inside the unit circle.

F - - [A|B]
?

6

v u
d

x

Fig. 1. State feedback stabilization

Let us first assume that the disturbance signal d is a unit
impulse

d(k) =

{
1 k = 0
0 k 6= 0

and wish to stabilize the system with minimum energy in
the controller output v. If F is stabilizing, it is well-known
that the energy of v, i.e., the square of the `2 norm of v, is
given by the square of the H2 norm of the transfer function
T (z) from d to v:

‖T‖22 =
1
2π

∫ 2π

0

|T (ejω)|2dω.

It is easy to see that

T (z) = F (zI −A−BF )−1B

which usually is called the complementary sensitivity func-
tion. The smallest energy that the controller has to generate
in order to stabilize the system is then given by the minimum
value of ‖T‖22 over all stabilizing F .

Theorem 3

inf
F :A+BF is stable

‖T‖22 = M(A)2 − 1.

The exact origin of Theorem 3 is hard to trace. A proof
was given in [23].

For this optimization problem, as well as those in the
sequel, the optimal F exists, i.e., the infimum is actually
a minimum, if and only if A does not have an eigenvalue
in T. Such a case is called a regular case. Otherwise, it is
called a singular case. In a regular case, the optimal F can be
obtained by solving a discrete-time Lyapunov (not Riccati)
equation, as done in [23].

Next let us again assume that d is a unit impulse and set
to stabilize the system with minimum energy in the plant
input u. If F is a stabilizing feedback, it is well-known that
the energy of u is given by the square of the H2 norm of
the transfer function S(z) from d to u:

‖S‖22 =
1
2π

∫ 2π

0

|S(ejω)|2dω.

It is easy to see that

S(z) = 1 + F (zI −A−BF )−1B = 1 + T (z)

which is usually called the sensitivity function. The smallest
energy in the plant input needed in the stabilization of the
plant is then given by the minimum value of ‖S‖22 over all
stabilizing F .

Theorem 4

inf
F :A+BF is stable

‖S‖22 = M(A)2.

Theorem 4 follows from Theorem 3 rather easily. Since
the two terms 1 and T (z) in S(z) are orthogonal in H2, we
have ‖S‖22 = 1+‖T‖22. Hence minimizing ‖S‖2 is the same
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as minimizing ‖T‖2. The optimal feedback gain is the same
for the two problems.

Minimizing the control energy for a fixed disturbance
signal might not be the most reasonable thing to do. Next,
we assume that the disturbance d is an unknown signal with
energy bounded by 1. In this case, the worst case energy of
v is then the square of the H∞ norm of the complementary
sensitivity function T (z)

sup
‖d‖22<1

‖v‖22 = ‖T‖2∞ =

[
sup

ω∈[0,2π]

|T (ejω)|
]2

.

Theorem 5 ([11])

inf
F :A+BF is stable

‖T‖∞ = M(A).

Now if we are interested in the minimum value of the
worst case energy of the plant input u, then it is the H∞
norm of sensitivity function S(z) that needs to be minimized.

Theorem 6 ([17])

inf
F :A+BF is stable

‖S‖∞ = M(A).

Unlike the H2 minimization case in Theorem 3-4, the H∞
minimization problems for T (z) and S(z) are completely
different problems. The optimal or in the singular case the
near optimal feedback gains are different, though rather
surprisingly the optimal values of the two functions to be
minimized are the same and are given by M(A).

Having considered the H2 norm and H∞ norm of T (z)
and S(z), we may consider the H0 “norm” of T (z) and
S(z).

Theorem 7 ([22]) For each stabilizing F ,

‖S‖0 = M(A).

This result is often called the discrete-time Bode integral
formula, though it is nothing more than the Jensen’s formula
from a mathematical point of view.

Theorems 4, 6, and 7 reveal that the minimum values of
‖S‖∞, ‖S‖2, ‖S‖0 are all the same. Together with Theo-
rem 1, they prompt us to take a look at the other “p-norms”.
The outcome is quite pleasant and follows directly from the
increasing property of ‖S‖p as a function of p.

Theorem 8 For each p ∈ [0,∞],

inf
F :A+BF is stable

‖S‖p = M(A)

It turns out that in the regular case, all these optimization
problems for different p share a common optimal F . In the
singular case, it is possible to construct a common family of
stabilizing Fε, parameterized by ε > 0, such that ‖S‖p →
M(A) as ε → 0.

The complementary sensitivity function T (z) is not so
lucky. We have seen that ‖T‖2 and ‖T‖∞ have different
minimum values. Curiosity drives us to consider ‖T‖0. It is

easy to check that ‖T‖0 is different for different stabilizing
F . It is not clear what the minimum value of ‖T‖0 is when
F is chosen among all stabilizing feedback gains.

Let us now consider several implications of the above
results. The first is the stabilization problem with signal to
noise ratio (SNR) constraint. Such a problem was considered
in [5]. In Figure 1, assume now that d is a zero-mean white
noise with variance σ2

d. With F stabilizing, v is then a
stationary process with variance σ2

v = ‖T‖22σ2
d. In order to

implement the stabilizing control corresponding to the F , the
signal to noise ratio of the input channel, defined as

SNR =
σ2

v

σ2
d

,

has to be ‖T‖22. In certain applications, the SNR of the input
channel is constrained due to hardware limitations. Then the
controller F can be implemented only if the SNR of the input
channel hardware is greater than ‖T‖22. What is the smallest
SNR requirement on the hardware so that the stabilization
is possible? It follows from Theorem 3 immediately that the
stabilization is possible if and only if the SNR is greater
than M(A)2−1. Here finding the smallest SNR requirement
is nothing more than minimizing the H2 norm of T (z).
However this new interpretation lays the foundation of the
extension to multiple-input systems.

In the above problem, the input signal is subject to an
additive noise, whereas in the problem to be considered in the
sequel, the input signal is subject to a multiplicative noise,
as shown in Figure 2. Such a problem was considered in [8].
Here κ(k) is a white noise with unit mean and variance σ2.
The variance gauges the unreliability of the channel. The
closed-loop system now is not an usual LTI system. It is
governed by the following stochastic difference equation

x(k + 1) = (A + Bκ(k)F )x(k).

This system is said to be mean square stable if for each
x(0) = x0, possibly random with finite second moment
E [x0x

∗
0], the second moment E [x(k)x(k)∗] → 0 as k →∞.

Here we used the notation E [·] to mean the expectation. It
can be proved [15] that this system is mean square stable if
and only if σ2‖T‖22 < 1. Therefore, the system can tolerate
more unreliability of the input channel if ‖T‖22 is small. The
maximum amount of unreliability tolerable by designing F
is then given by [M(A)2 − 1]−1.

F -κ(k) - [A|B]

6

uv

x

Fig. 2. State feedback system with stochastic time-varying gain

Let us now consider two robust stabilization problems.
The first problem concerns the uncertain system shown in
Figure 3. The uncertainty ∆ in the input channel is a possibly
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nonlinear, time-varying, dynamic system with an `2 induced
norm bound:

‖∆‖ = sup
v∈`2,v 6=0

‖e‖2
‖v‖2 ≤ δ. (7)

The uncertain input channel now has an input/output map
(I + ∆) and it introduces a multiplicative uncertainty to the
plant. We say that F is robustly stabilizing if it is stabilizing
and the closed-loop system in Figure 3 is internally stable
for all possible uncertainty ∆ satisfying the norm bound
(7). By using the small gain theorem [27], one can see that
F is robust stabilizing if and only if δ < ‖T‖−1

∞ . Hence
‖T‖−1

∞ gives a stability margin of the closed-loop system.
What is the largest stability margin obtainable by designing
F ? Immediately from Theorem 5, we see that the largest
stability margin is M(A)−1.

F -

- ∆

?
- [A|B]

6

v u

e

x

Fig. 3. State feedback system with plant multiplicative uncertainty

The second robust stabilization problem concerns the
uncertain system shown in Figure 4. The uncertainty again
satisfies the norm bound

‖∆‖ = sup
u∈`2,u 6=0

‖e‖2
‖u‖2 ≤ δ, (8)

but now it is connected to the input channel in a feedback
manner. The uncertain input channel now has an input/output
map (I−∆)−1 and it introduces a relative uncertainty to the
plant. In this setup, we say that F is robustly stabilizing if
it is stabilizing and the closed-loop system in Figure 4 is
internally stable for all possible uncertainty ∆ satisfying the
norm bound (8). By using the small gain theorem again, one
can see that F is robustly stabilizing if and only if δ <
‖S‖−1

∞ . Hence ‖S‖−1
∞ gives a stability margin of the closed-

loop system. What is the largest stability margin obtainable
by designing F ? Immediately from Theorem 6, we see that
the largest stability margin is again M(A)−1.

F -
?

∆ ¾

- [A|B]

6

v

e

u

x

Fig. 4. State feedback system with plant relative uncertainty

All results in this section demonstrate that the Mahler
measure M(A) gives a degree of difficulty in controlling
an unstable single-input system [A|B]. However, extending
these results to multiple-input systems cannot be done in a
naive way. The next section is dedicated to this purpose.

IV. JUSTIFICATIONS II – MULTIPLE-INPUT SYSTEMS

The climax of the current activities in this line of research
is in the extension of the results in the last section to the
multiple-input case. The extension is motivated by issues in
networked control systems. The presentation here is sketchy.

F - Channel - [A|B]

6

v u

x

Fig. 5. A state feedback networked control system

Now assume that the system [A|B] has m inputs, i.e., B
is an n×m matrix. Each input channel is now considered to
be a communication channel with certain capacity constraint.
How to model a communication channel in a feedback loop
is a big unsettled issue. We will consider several possible
models. Since there are m input channels, we consider the
i-th channel, transmitting the i-th element vi of v to the i-th
element ui of u.

The first model is the commonly used additive white Gaus-
sian noise (AWGN) channel model, as shown in Figure 6.
This model is strongly influenced by the existing information
theory [6]. Here di is a white Gaussian process with zero

-
?

-
vi ui

di

Fig. 6. An SNR channel model

mean and variance σ2
di

, and vi is a stationary process with
zero mean and variance σ2

vi
. The signal-to-noise ratio of the

channel is defined as

SNRi =
σ2

vi

σ2
di

,

and the capacity of this channel as

Ci =
1
2

ln(1 + SNRi).

The second model is the so-called fading channel model
shown in Figure 7. Here instead of an additive white Gaus-

- κi(k) -
vi ui

Fig. 7. A fading channel model

sian noise, the transmitted signal is subject to a multiplicative
noise κi(k) which is a white process with mean µi and
variance σ2

i . The channel capacity is defined as

Ci =
1
2

ln
(

1 +
µ2

i

σ2
i

)
.
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This model is strongly motivated by the packet drop phe-
nomenon in a communication network and κi(k) is often
taken as a Bernoulli process [8].

-

- ∆i

?
-

vi ui

ei

Fig. 8. An SER channel model

The third model is the so-called signal-to-error ratio (SER)
model shown in Figure 8. Here ∆i is a possibly nonlinear,
time-varying, dynamic uncertain system satisfying ‖∆i‖ ≤
δi. We call δ−1

i the SER which measures the transmission
accuracy and define the capacity as Ci = ln δ−1

i . This model
has been used to describe a logarithmic quantization in a
networked channel [9], [11], [18].

The fourth model is the received-signal-to-error ratio (R-
SER) model shown in Figure 9. Here ∆i is a possibly
nonlinear, time-varying, dynamic uncertain system satisfying
‖∆i‖ ≤ δi. We call δ−1

i the R-SER which measures the
transmission accuracy and define the capacity as Ci =
ln δ−1

i . This model can be used to describe an alternative
version of logarithmic quantization [17].

- -

¾∆i

6

vi ui

ei

Fig. 9. An R-SER channel model

Now let the m input channels be all modelled by one of
the above ways. Assume that there is no mixed modelling.
The total capacity of the m channels is then given by

C = C1 + C2 + · · ·+ Cm.

Since the capacities are finite, one may not be able to design
a feedback controller to stabilize the feedback system in the
respective sense corresponding to the modelling method. One
possible question to ask is that for given C1, C2, . . . , Cm,
whether it is possible to design an F so that the closed-
loop system is stable. This is a bad problem leading to a
dead end. We have to take over the power of allocating the
individual channel capacities C1, C2, . . . , Cm when the total
capacity C is given. The question now becomes that for a
given total capacity C, whether it is possible to allocate it
among different channels and also design a feedback matrix
such that the closed-loop system is stable. Here the feedback
gain F is not the only design parameter. The allocation of the
total capacity C among the m input channels is also a design
freedom. Since the whole design involves both the channel
resource allocation and the controller design, we call it the
channel/controller co-design. There is a very nice answer to

the latter question which gives the smallest total capacity
needed to make the co-design possible.

Theorem 9 (Universal minimum capacity) Assume that
the multiple input channels are modelled by any of the
four channel models. The system can be stabilized by the
channel/controller co-design if and only if C > h(A).

This theorem needs to be made more precise and proved
for each model individually. For the first, third and fourth
models, the proofs are given in [17]. For the third model, the
proof is also given in [18]. For the second model, the proof
is given in [26]. It is worth pointing out that all these proofs
connect back to the very basic idea of Murray Wonham
in doing mutiple-input state feedback pole placement [25].
We expect that this theorem is also true for other possible
channel models not listed here. It might also hold true for
some more sophisticated models capturing some combined
channel features. This is why the word universal is used.
More research is underway.

V. CONCLUSIONS

It is the hope of the author that this paper provides a
convincing story on M(A) or h(A) as an instability measure
for discrete-time LTI systems of the form (5) or (6).

There are other theoretical justifications for M(A) to be
taken as a measure of instability of a discrete-time LTI
system, that we do not survey in this paper. In particular,
there is a body of literature on the minimum data rate
requirement in the input channel in stabilizing a system. In
this body of studies, an input channel in Figure 5 is modelled
as a data communication device which can only transmit
certain number of bits of data per unit time. In several
different setups, it has been shown that the smallest total
data rate of all input channels required for the stabilization
of a system [A|B] is given by h(A) = ln M(A) in a rather
simple way. There were an extensive list of references on
such studies. We refer to the two special issues [2], [3], the
papers therein and the references listed in the papers.

This paper only addresses the control issues for system
[A|B], implying that the state feedback is used for control.
Roughly speaking, M(A) quantifies how difficult it is to sta-
bilize a system using state feedback control. More generally

we wish to treat a complete state space system
[

A B
C D

]
,

i.e., one described by difference equation

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k).

In this case, the controller is implicitly assumed to be an
output feedback controller. What is the difficulty in stabiliza-
tion? What is the appropriate measure of instability? These
are intriguing problems in front of us.
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