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Abstract— This paper presents an overview of outstanding
theoretical problems in delta-sigma modulator based electronic
digital-to-analog circuits and outlines quantization noise con-
ditioning techniques that are being employed to address these
problems. Both the problems and the conditioning techniques
are described in the context of a special class of electronic
circuits called frequency synthesizers.

I. INTRODUCTION

Digital-to-analog conversion circuits (DACs) are central
components in integrated hardware for several wireless
communication and consumer electronics applications. Their
primary goal is to generate a continuous time signal, y(t),
according to a given sequence of numbers, y[n]:

y(t) =
∞

∑
n=0

y[n]p(t−nT s), (1)

where Ts is a positive real number and p(t) is an arbitrary
signal with finite support e.g., a unit pulse of duration, Ts.

Since most DAC implementations employ a binary repre-
sentation of the sequence, y[n], DAC performance is often
characterized in terms of number of effective bits used to
represent y[n] e.g., 2-bit DAC, 6-bit DAC, etc. In general,
a p-bit DAC has higher performance than a q-bit DAC if
p> q all else being comparable. Note that DAC performance
is characterized by several other metrics such as bandwidth,
speed, and power consumed. However, this paper focuses on
effective number of bits for the sake of simplicity. Transistor
non-linearity, noise, and inevitable integrated circuit (IC) fab-
rication errors limit the effective number of bits of integrated
DACs. However, the progressive scaling of IC fabrication
technologies and Moore’s law have made high speed DACs
i.e. those with small values of Ts practical.

Delta-sigma modulator based DACs enable high perfor-
mance by trading off DAC speed for higher effective number
of bits. The block diagram of a generic delta-sigma mod-
ulator based DAC is shown in Fig. 1. A high resolution
sequence, x[n], band-limited to B⊂ [−π,π] and representing
the desired analog signal that needs to be generated, is
coarsely quantized by a delta-sigma modulator. Samples of
the resultant sequence, y[n], have fewer bits than those of x[n]
and require only a DAC with fewer number of effective bits.
Of course, quantization induces error but the quantization
error is suppressed within the signal band, B. Outside the
signal band, B, the quantization error is suppressed by
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Fig. 1. Block diagram of a generic delta-sigma modulator based digital-
to-analog converter

filtering subsequent to the DAC. Consequently, a delta-sigma
based DAC can achieve very large effective number of bits
even while the constituent DAC has only a few effective
number of bits.

The aforementioned benefit has led to wide-spread use of
delta-sigma modulator based DACs in several applications.
However, their performance is plagued by several problems.
First, in many delta-sigma modulators, the quantization error
suppression within the signal band, B, depends strongly on
the input sequence, x[n]: on its type e.g., a constant input or
a sinusoidal input or a white input, on its variance e.g., large
or small etc. This dependence makes quantitative predictions
about the delta-sigma modulator based DAC difficult and in
many cases unreliable. This is particularly problematic in
the design of practical integrated DACs. Second, the amount
of quantization noise suppression depends strongly on the
number of bits needed to represent the delta-sigma modulator
output bits of y[n]. In fact, in delta-sigma modulators that
quantize to only a 1-bit sequence e.g. y[n] = 0 or 1, also
known as 1-bit delta-sigma modulators, the quantization
error suppression can be very poor for a reasonably large
class of sequences, x[n]. Third, delta-sigma modulators are
known to exhibit limit cycle behavior. Limit cycles result
in strong spikes in the power spectral density of the delta-
sigma modulator based DAC’s output, y(t): such spikes are
extremely undesirable in most applications. Fourth, transistor
non-linearity and inevitable IC fabrication errors also cause
spikes in the power spectral density of DAC output and
undo much of the quantization noise suppression achieved
by the delta-sigma modulator. Both effects severely limit
the performance of the overall delta-sigma modulator based
DAC.

Most of the aforementioned problems can be addressed by
appropriately modifying the statistical properties of the delta-
sigma modulator’s quantization noise. Such ”quantization
noise conditioning” can eliminate limit cycles, improve quan-
tization noise suppression within the signal bandwidth, B,
and more importantly, make the digital-to-analog conversion
process insensitive to both transistor non-linearity and IC
fabrication errorss.

This paper describes the aforementioned problems in
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Fig. 2. Block diagram of a generic digital delta-sigma modulator

delta-sigma modulator based DAC design and outlines recent
quantization noise conditioning techniques in detail. The
problems and the conditioning techniques are described in
the context of a special class of DACs called a frequency
synthesizer which generates a continuous time periodic sig-
nal with instantaneous frequency changes according to the
given sequence, x[n]. Sections II and III present an overview
of the delta-sigma modulator and the frequency synthesizer
respectively; Section IV describes two main problems that
limit the performance of the frequency synthesizer and
describes recent quantization noise conditioning techniques
to address them; finally, Section VI concludes the paper.

II. OVERVIEW OF DIGITAL DELTA-SIGMA
MODULATION

Fig. 2 shows the block diagram of a generic digital
delta-sigma modulator (DDSM). It consists of a quantizer,
”forward transmission” and ”feedback” filters, represented by
their Z-transforms, F(z) and G(z) respectively. The DDSM
input is a sequence of rational numbers, x[n], 0 ≤ x[n] <
1, where n is a sample index. It is band-limited to B =
[−π/R,π/R] where R is usually a positive integer called the
”oversampling ratio” (OSR) i.e.

Sxx(e jω) = 0,∀ω /∈ B,

where only ω ∈ [−π,π] is considered. In practical imple-
mentations, it is common to represent the various sequences
in the DDSM in binary form. For example, it is assumed
that x[n] is represented by a p bit binary number so, x[n] ∈
{0,1, ...,2p−1}/2p. The DDSM coarsely quantizes the input
sequence, x[n], to a sequence of integer multiples of 1/M,
namely v[n], where M = 2Q, Q is a positive integer, and
Q < p. The quantizer is assumed to be of the uniform mid-
tread type whose operation is defined as:

v[n] =
1
M

⌊
Mr[n]+

1
2

⌋
,

where bxc is the largest integer less than or equal to x, and
r[n] is the input to the quantizer as shown in the figure. The
quantization error, q[n] is defined as,

q[n] = v[n]− r[n], (2)

and it can be shown that

q[n] ∈ −2Q

2
+

1
2p {0,1, ...,K−1}

where K = 2p/2Q, i.e. −M/2≤ q[n]< M/2. Often times, the
range of v[n] is limited intentionally to {vmin,vmax}, where
0 < vmin and vmax < 1 for practical reasons described later.
When this happens, q[n] may not be bounded so, and the

situation is referred to as ”quantizer overload”. It can be
shown that

v[n] = x[n]∗ st f [n]+q[n]∗nt f [n], (3)

where ∗ is the convolution operator, and st f [n] and nt f [n]
are sequences whose Z-transforms are the so-called ”signal”
and ”noise transfer functions,”

ST F(z) =
F(z)

1+F(z)G(z)
, and NT F(z) =

1
1+F(z)G(z)

.

The filtered quantization error, e∆Σ[n] = q[n]∗nt f [n] is called
”shaped quantization noise” to distinguish it from the quanti-
zation error, q[n]. The filters, F(z) and G(z), are chosen such
that NT F(z) suppresses the quantization error, q[n], within
the input sequence’s bandwidth, B. The most popular DDSM,
called the Lth order DDSM, sets

F(z) = z−L(1− z−1)−L,G(z) = (1− z)L− zL,

resulting in signal and noise transfer functions,

ST F(z) = z−L,NT F(z) = (1− z−1)L.

Consequently, while the input sequence, x[n], is simply
delayed by L samples, the shaped quantization noise, e∆Σ[n],
is attenuated within the signal band, B. The power spectral
density of the shaped quantization noise can be shown to be:

See(e jω) =
∣∣∣2sin

(
ω

2

)∣∣∣2L
Sqq(e jω),

if the power spectral density of quantization error, Sqq(e jω),
exists. Higher order DDSMs result in superior quantization
error suppression within B at the expense of higher amplifi-
cation outside i.e. in [−π,π]−B.

Note that in many cases, both q[n] and e∆Σ[n] may not
be wide sense stationary and hence, their power spectral
densities may not even be defined. This issue is discussed in
detail later in Section IV. In practice, it is assumed that q[n]
is independent of q[m] for all integers m 6= n, independent
of x[m] for all integers m, and uniformly and identically
distributed for all integers, n, such that,

Sqq(e jω) =
1

12M2 ,See(e jω) =
1

12M2

∣∣∣2sin
(

ω

2

)∣∣∣2L
. (4)

These properties are henceforth referred to as ”desired prop-
erties”.

III. OVERVIEW OF DELTA-SIGMA MODULATOR
BASED FREQUENCY SYNTHESIS

A block diagram of the frequency synthesizer is shown
in Fig. 3(a). A low noise reference oscillator generates a
periodic binary signal, vre f (t), of frequency fre f . In the
following, n is used as a running index that counts the
number of cycles of vre f (t). The DDSM quantizes the
given sequence, x[n] = α +m[n], where m[n] is a zero-mean
sequence and 0≤ α,x[n]≤ 1.0, to v[n], just as described in
Section II.

The voltage controlled oscillator (VCO) generates M pe-
riodic signals, sk(t),k = 0,1, ...,M − 1, all of which have
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Fig. 3. (a) Block diagram of a digital delta-sigma modulator based frequency synthesizer. (b) Example timing diagram.

the same instantaneous frequency that is proportional to the
control voltage, vc(t), but a different phase offset:

sk(t) = cos(2π f0t +2π

t∫
0

Kvvc(τ)dτ +2πk/M),

where f0 and Kv are constants characteristic of the VCO.
The frequency divider circuit generates a binary output

signal, vdiv(t). Suppose that the (n− 1)th positive going
transition of vdiv(t) is aligned with some positive going
transition of sk[n−1](t), where k[n− 1] ∈ 0,1, ...,M−1 is an
arbitrary integer. The frequency divider ensures that there are
exactly (N + v[n]) VCO cycles (including fractional cycles)
between the (n− 1)th and nth positive going transitions of
vdiv(t). It does so by counting (N + bv[n]c) full cycles of
sk[n−1](t) and then ”switching” to sk[n](t) i.e. aligns its nth

positive going output transition with the very next positive
going transition of sk[n](t) where,

k[n] = (k[n−1]+Mv[n])mod M. (5)

The frequency divider operation is illustrated in Fig. 3(b)
for the example case of N = 2, M = 8, v[n] = 7/8, and vc(t)=
c, a constant. Effectively, the divider output signal, vdiv(t),
has a frequency that is (N + v[n]) = (2+ 7/8) times lower
than f0.

The phase frequency detector (PFD) compares the times
of occurrence of positive going transitions of vdiv(t) and
vre f (t) and accordingly directs the charge pump (CP) and
low-pass loop filter (LPF) circuits to raise (or lower) the
control voltage, vc(t), by an amount that is proportional to
the difference between the times of occurrence. If the positive
going transition of vdiv(t) occurs later than that of vre f (t),
then the control voltage, vc(t) is raised, thereby increasing
the instantaneous frequency of the VCO outputs, and has-
tening subsequent positive going transitions of the divider
output, vdiv(t). The resulting negative feedback operation
ensures that, in steady state, the outputs of the divider and
the reference oscillator are aligned. Consequently, the control
voltage, vc(t), ”settles” to such a value that the output, s0(t),
is:

s0(t) = cos
(
2π [N + y(t)] fre f t

)
, (6)

where

y(t) = α +
∞

∑
n=0

[
m[n]
M

+
e∆Σ[n]

M

]
h(t−nTre f ), (7)

Tre f = 1/ fre f , and h(t) is a causal function determined by
the dynamics of the negative feedback loop. The actual form
of h(t) is unimportant for this discussion. It suffices to know
that it suppresses the components of y(t) in the frequency
band, [ floop,∞) i.e. it behaves like a low pass filter with a
bandwidth of floop.

The DDSM based frequency synthesizer can be used
to generate a periodic signal with a fixed frequency,
(N +α) fre f , simply by setting m[n] = 0. Furthermore, its
frequency, and hence its phase, can be modulated accu-
rately according to m[n] fre f as long as fre f /2R < floop. In
either role, it is an important component in communication
transceiver circuitry. The DDSM enables precise frequency
synthesis. If not for the DDSM, the high resolution frequency
synthesis would have been impossible: practical circuits
force M to be small limiting the granularity of frequency
resolution. In fact, in most cases called fractional-N phase
locked loops (FNPLLs), M = 1, implying that the VCO gen-
erates only a single periodic signal, the divider only counts
full cycles, and the frequency synthesis granularity is fre f .
So, modulation not possible; furthermore, the granularity is
too coarse for most practical channelized wireless systems
such as GSM. The DDSM enables these applications by
quantizing α +m[n] to v[n].

Just like in the DDSM based DAC showed in Fig. 1, the
DDSM quantization noise degrades performance. Specifi-
cally, it causes phase noise in the output, s0(t). It can be
shown that the PSD of the phase noise of s0(t), if its exists,
is:

Sφ ( fm) =
π2

3M2 fre f

∣∣∣∣2sin
(

π fm

fre f

)∣∣∣∣2(L−1)

|H( j2π f |2 dBc/Hz ,

where H(s) is the Laplace transform of h(t), fm is offset
frequency from the target fixed frequency, (N +α) fre f , and
dBc/Hz refers to power measured in a 1Hz band and nor-
malized to the variance of s0(t). Since the DDSM suppresses
quantization noise within the modulation sequence’s band-
width, B, high precision frequency synthesis and frequency
modulation with high signal-to-noise ratio are achieved.
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Since the synthesizer circuits (represented by H(s)) suppress
the quantization noise outside the modulation signal’s real
bandwidth, B fre f /2π , so called ”out-of-band” spurious emis-
sions are suppressed as well.

However, practical DDSM based frequency synthesizers
suffer from several problems that result in elevated phase
noise and strong undesirable spikes in the power spectral
density of the phase noise. Most of these problems can be
traced to two effects: (a) the quantization error, q[n], not
possessing the ”desired properties” mentioned at the end of
Section II, and (b) the effect of transistor non-linearity and
inevitable circuit fabrication errors on the residual shaped
quantization noise. These problems and recent DDSM quan-
tization noise conditioning techniques that address them are
discussed in the following sections.

IV. PROBLEMS WITH QUANTIZATION NOISE

A. Quantizer Overload

In many DDSM based frequency synthesizers, the goal
is to aggressively reject quantization noise within the sig-
nal band, B, while restricting the range of v[n] to only a
few values. For example, the aforementioned DDSM based
fractional-N phase locked loops (FNPLLs) use M = 1 and
restrict v[n] to 0 or 1. Such restrictions relax the requirements
on the frequency divider, the phase frequency detector, and
the charge pump circuits and are hence desirable. Since the
frequency divider has to accommodate only two possible
division modulii, N or N+1, divider power consumption can
be significantly reduced. A dual modulus frequency divider
is also insensitive to systematic delays in the divider circuits
that depend on v[n]. As described in the next section, if v[n]
were a multi-level signal, these systematic delays would act
like non-linearity and cause elevated noise and undesirable
spikes in the PSD of s0(t). A small range of allowable v[n]
also reduces the maximum instantaneous errors between the
times of occurrences of positive going transitions of vre f (t)
and vdiv(t), which can be shown to be,

|τ[n]| ≤ Tvco

∣∣∣∣∣n−1

∑
m=0

(v[m]−α)

∣∣∣∣∣ .
Smaller instantaneous errors reduce the circuit noise (thermal
noise from transistors and resistors) contributions of the
phase frequency detector and the charge pump.

While a small range of v[n] is desirable from a circuit
implementation point of view, DDSMs with a limited output
range suffer from quantizer overload (see Section II) and
several attendant problems. Quantizer overload leads to q[n]
not being independent of x[m] for at least some integers m,n
or not being independent of q[m] for at least some integers
m 6= n. In turn, the DDSM may not exhibit the expected
quantization noise shaping offered by the chosen filters, F(z)
and G(z), i.e. (4) may not be valid anymore.

In general, for DDSMs with quantizer overload, the ef-
fective quantization noise suppression achieved within the
signal band, B, may vary significantly depending on the
magnitude of the input sequence, x[n] e.g., the value of α

whem m[n] = 0. In other words, the estimate of the PSD of
the shaped quantization noise shaping in (4) is inaccurate. A
few researchers [1] have employed alternative models of the
quantizer that are more sophisticated than the additive model
shown in (2) to better predict achievable quantization noise
shaping. For example, [1] uses a minimum mean square error
model for the quantizer:

q[n] = v[n]− (kxrx[n]+ kqrq[n]) , (8)

where rx[n] depends on the input sequence, x[n], rq[n] is
noise uncorrelated with x[n], and kx and kq are real numbers.
The minimum mean square error fit ensures that the residual
quantization error, q[n], is uncorrelated with r[n] allowing
linear analysis and making predictions about the PSD of
the shaped quantization noise. The DDSM is simulated
extensively for special cases of constant inputs, x[n] = α ,
or sinusoids, to empirically estimate the gain terms, kx and
kq, and the variance of the quantization error, q[n], namely
σ2

q , as functions of α . This allows predicting the PSD of the
shaped quantization noise as a function of α:

See(e jω) =
σ2

q (α)∣∣1+ kq(α)F(e jω)G(e jω)
∣∣2 . (9)

The method does predict signal-to-noise ratio reasonably
well for constant and sinusoidal input sequences. However,
the situation with more general input sequences in unclear.
The extensive DDSM simulations that are required make the
method difficult to use in practical integrated circuit design.

Even with better prediction of the effective quantization
noise shaping, quantizer overload causes a bigger problem -
DDSM instability. For a given range of v[n] and depending
on the chosen noise transfer function, NT F(z), there is only
a small range of values of x[n] over which the DDSM is
stable and the PSD of the shaped quantization noise can be
predicted by (9). Beyond this range, the DDSM is termed
unstable, doesn’t offer any useful quantization noise shaping
for use in the frequency synthesizer. Note that the more
aggressive the quantization noise shaping e.g. higher L, or
the more limited the range of v[n], the lower the range of
x[n] for which the DDSM remains stable. For the case of the
DDSM based fractional-N PLLs with v[n] limited to 0 or 1,
the DDSM stability problem is most aggravated.

B. Limit Cycles

Delta-sigma modulators pose another serious challenge in
the form of limit cycles. It is well known that the delta-sigma
modulator output and its quantization error, q[n], become
periodic for constant rational inputs. Analog delta-sigma
modulators, in which the samples of input sequence, x[n], are
real numbers and not necessarily rational numbers, are not
very susceptible to limit cycles. This is because, in practical
implementations of such analog delta-sigma modulators, x[n]
represents an analog voltage or current signal and invariably
contains some random noise component that may be suffi-
cient to eliminate limit cycles in most cases [2].

In contrast, the input of a DDSM is a digital number that is
always rational (see Section II) and has no circuit noise. So,
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Fig. 4. Simulated power spectral densities of shaped quantization noise (a) without and (b) LSB dithering. Simulated power spectral densities of frequency
synthesizer output (c) without and (d) with LSB dithering. (e) Zoomed-in version of (c). (f) Zoomed-in version of (d).

for every constant input, the DDSM output and quantization
error are both periodic resulting in spikes in their PSDs.
Consequently, limit cycles are problematic in DDSMs: they
result in strong spikes in the PSD of the phase noise of s0(t).
Spikes in the PSD are particularly degrading to most wireless
and consumer electronics applications such as cell phones,
audio/video equipment.

In spite of the paramount importance of eliminating limit
cycles in DDSMs, the problem has attracted only scant
attention to the task so far. The author’s prior work [3] has
investigated so-called ”LSB dithering” techniques towards
this purpose: a random sequence, d[n]∈ 0,1, called ”dither”,
added to the least significant bit of a binary representation
of x[n] e.g.,

xnew[n] = x[n]+d[n]2−p,

for a DDSM with a p-bit input, is sufficient to eliminate
spikes in the PSD of q[n] and v[n] for a large class of DDSMs
including DDSMs of 2nd order or higher. Specifically, con-
sider DDMSs for which f [n] and g[n] are integer valued, the
qantizer does not overload, and K = 2p/2Q > 2. If one of the
following conditions is satisfied for every positive integer, m:
for each integer pair (k1,k2) 6= 0,0) and 0≤ k1,k2 < K,

1) the sequence, (k1 f [n]+ k2 f [n+m])mod(K) does not
converge to 0 as n→ ∞,

2) a non-negative integer, s = s(m) 6= m exists such that
(k1 f [s]+ k2 f [s+m])mod(K) = K/2,

3) a non-negative integer, g = g(m) < m exists such that
(k2 f [g])mod(K) = K/2

then, the quantization error, q[n], has the following proper-
ties:

1) the conditional random variable q[n]|x[n−m] converges
in distribution to U ,

2) (q[n],q[n−m]) converges in distribution to (U,V ),
where U and V are independent random variables that are
uniformly distributed over the no overload range of q[n].
These properties imply not only the elimination of spikes in
the PSD of the quantization noise, but also that q[n] asymp-
totically acquires the aforementioned ”desired properties”
and approaches a white random process with a flat PSD,
Sqq(e jω) = 1/12M2, thereby validating the PSD predictions
in (4). The sufficient conditions have been shown in [3] to
be satisfied by DDSMs of 2nd order or higher.

Simulations in MATLAB have confirmed these results, as
shown in Fig. 4. The simulated PSD of the shaped quantiza-
tion noise, e∆Σ[n], without and with LSB dithering, in a 2nd

order DDSM are plotted in Figs. 4(a) and 4(b) respectively.
Note that the x-axis shows an absolute frequency scale when
the unit sampling rate is assumed to fre f = 48 MHz. The 2nd

order DDSM used M = 1, and p = 16 and applied a constant
input. The corresponding PSDs of s0(t) obtained when the
DDSM was used in a frequency synthesizer with N = 51,
fre f = 48 MHz are plotted in Figs. 4(c) and 4(d): zoomed-in
plots showing the PSD on one side of the central spike are
shown in Figs. 4(e) and 4(f).

Effectively, LSB dithering alters the properties of the
quantization error of the DDSM: the two-level additive
random sequence, d[n], eliminates limit cycles and imparted
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Fig. 5. Simulated power spectral densities of shaped quantization noise (a)
with unfiltered LSB dither, and (b) with filtered LSB dither, in a 3rd order
digital delta-sigma modulator. Simulated power spectral densities of shaped
quantization noise (a) with unfiltered LSB dither, and (b) with filtered LSB
dither, in a 2nd order digital delta-sigma modulator.

desired properties of whiteness on the quantization error,
q[n]. Consequently, a circuit engineer trying to design a
DDSM based frequency synthesizer could simply use a 2nd

or higher order DDSM, make sure that the quantizer does not
overload, and employ LSB dithering: he/she is guaranteed to
avoid PSD spikes due to DDSM limit cycles, and can exactly
predict the PSD of the phase noise of s0(t).

However, this quantization noise conditioning comes with
a minor penalty: elevated phase noise caused by d[n], par-
ticularly when p is small. Fortunately, further conditioning
can be employed to suppress the noise contribution within
the signal band, B, by filtering d[n] prior to addition [4].
As shown in [4], as long as d[n] undergoes net two or
more integrations before it reaches the quantizer, it ensures
that the quantization error, q[n] has the aforementioned
desired properties of independence and whiteness. Again, the
quantization noise conditioning using dither is illustrated in
Fig.5 when the dither sequence is filtered using a (1− z−1

filter i.e. when d[n]−d[n−1] is added to the DDSM input.
In a 3rd order DDSM, even with such filtering, the random
sequence, d[n], sees net two integrations so, limit cycles are
eliminated, as is evident from Fig. 5(a). In contrast, in a 2nd

order DDSM, with filtering, d[n] sees only net integrations
so, limit cycles are not eliminated, as is evident from Fig. 5.
Note that in all cases, the simulation employed a sinusoidal
input sequence.

Note that there is scope and necessity for further im-
provement. For instance, the LSB dithering technique is
not successful when employed in DDSMs with quantizer
overload: the aforementioned conditions are not satisfied.
However, as described in the previous subsection, DDSMs
with limited range of v[n], particularly those that limit v[n] to
only two values, are desirable owing to circuit implementa-
tion conditions. It is conceivable that changing the statistical
properties of d[n] may allow the elimination of limit cycles
in DDSMs with overloaded quantizers as well.
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Fig. 6. (a) Simulated power spectral density of synthesizer output in the
presence of phase errors. (b) Simulated power spectral density of θk[n] using
Gd(z) = G1(z) and Gd(z) = G2(z).

V. EFFECTS OF CIRCUIT ERRORS ON
QUANTIZATION NOISE

In most DDSM based frequency synthesizers, performance
is limited by inevitable transistor fabrication errors and
circuit non-linearity. Specifically, undesired spikes in the
PSD of the output and elevated noise in the desired signal
band, B fre f /2π , result from these errors. While there are
several sources of such errors, only two important ones
are discussed here for the sake of simplicity. In each case,
the problem is described and a recent quantization noise
conditioning technique that addresses it is briefly described.

A. Phase Errors

One of the main problems with the DDSM based fre-
quency synthesizer described in Section III is caused by
errors in the phases of the M periodic signals, sk(t),k =
0,1, ...,M−1. Due to transistor sizing mismatches and sys-
tematic circuit errors in the VCO, the M periodic signals
include small phase errors:

sk(t) = cos(2π (N + y(t)) fre f t +
2πk
M

+θk),

where fre f (t) is given by (7).
The deleterious effects of these VCO phase errors are

illustrated in Fig. 6(a). The figure shows plots of the sim-
ulated PSD of the phase noise and the output, s0(t), of a
DDSM based frequency synthesizer with M = 16, fre f = 48
MHz, α = 1/3, N = 51, a 3rd order DDSM. The θk are
chosen randomly from a zero mean, Gaussian distribution
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with a root mean square (r.m.s.) value of 10% of the nominal
phase step between adjacent VCO output signals, 2π/M.
As is evident from the figure, even such small phase errors
result in very strong pikes making this frequency synthesizer
unsuitable for use even in applications that have relatively
relaxed requirements such as Bluetooth.

The origin of the strong spikes is best understood by
referring to Fig. 7(b). As described in Section III, the nth

positive going output transition of vdiv(t) is aligned with a
positive going transition of sk[n](t), where k[n] is given by
(5). Whenever this happens, a time error, τerr[n] proportional
to θk[n] is introduced into the negative feedback loop. These
dynamic time errors add to the phase noise in s0(t) caused
by the DDSM’s shaped quantization noise. Specifically,

s0(t) = cos

(
2π [N + y(t)] fre f t +

∞

∑
m=0

θk[n]g(t−nTre f )

)
,

where g(t) is a causal function determined by the dynamics
of the synthesizer’s negative feedback loop. Its actual form
is not important for the present discussion.

Apart from a scaling factor, the effect of these phase errors
is that of a one-to-one mapping from k[n] to θk[n] i.e. as a
memoryless lookup table. Closer observation of (5) reveals
that it describes the behavior of a 1st order DDSM that
quantizes a sequence of fractions, Mv[n], to a sequence of
integers, and that k[n] is its quantization error. It is well
known that the samples of the quantization error of a 1st

order DDSM are definitely not independent of the DDSM
input sequence, or white. Consequently, it is not surprising
that the non-linear mapping, θk[n], causes strong spikes.
Traditional circuit techniques to address such a problem
would involve careful design and/or elaborate calibration
and correction efforts to eliminate the errors, θk. However,
they are too small to reliably correct in either approach. The
author of this paper and colleagues have reported a recent
quantization noise conditioning technique [5] that effectively
addresses this technique very simply, as described below.

The technique filters a binary random sequence, η [n] ∈
0,1, with a finite impulse response filter, Gd(z), and adds
the result to the calculation of k[n]:

k[n] = (k[n−1]+ v[n]+η [n]∗gd [n])modM, (10)

where gd [n] is a sequence of integers whose Z-transform is
Gd(z). It was proved in [5] that if ∀i= 0,1, ...,Q−1,∃ integer
n= n(i) such that |gd [n]|= 2i, then, the PSD of the sequence,
θk[n], does not have any spikes as long as the mapping is not
one-to-many i.e. θk1 6= θk2 ∀k1 6= k2. Since the phase errors
occur randomly, the likelihood of getting equal errors is very
low. Readers interested in the details of the mathematical
proof are referred to [5].

Essentially, the filtered dither alters the statistical prop-
erties of the 1st order DDSM’s quantization noise, k[n]/M,
such that it becomes insensitive to an arbitrary non-linear,
one-to-one mapping. The technique is illustrated in Fig. 6(b)

Simulated Phase Noise

Without MDDs

With 10% 
rms  MDDs

Frequency Offset from Center Frequency, Hz

Fig. 7. Simulated power spectral density of synthesizer output in the
presence of modulus dependet divider delays.

by plotting the simulated PSD of θk[n] for two cases of Gd(z),

G1(z) = 1−2z−1 +4z−2−8z−3 +8z−4−4z−5 +2z−6− z−7

G2(z) = 1−3z−1 +5z−2−5z−3 +3z−4− z−5.

Note that M = 16; while G1(z) satisfies the conditions, G2(z)
does not. The same experiment was repeated for several
randomly chosen sets of phase errors, thetak, with similar
results; only one of them is shown here. As is evident, if
the conditions on Gd(z) are not satisfied, stong spikes in the
PSD are observed; if they are satisfied, spikes are completely
eliminated.

The technique, general and powerful as it is, comes with a
penalty: the filtered dither adds significant amount of phase
noise. Fortunately, the dither filter Gd(z) can be chosen such
that the contribution is suppressed aggressively within the
signals band, B fre f /2π . Outside this band, the dynamics of
the synthesizer, given by H(s), suppress it significantly.

B. Modulus Dependent Delays

The effects of such circuit errors are illustrated below in
the context of the DDSM based FNPLL for which N = 51,
M = 1, α = 1/48, m[n] = 0, fre f = 48 MHz, and a 2nd order
DDSM is used to generate v[n]. Note that LSB dithering is
employed to render q[n] white as described in the previous
section. As described in Section III, ideally, s0(t) would
have a frequency of 2.489 GHz; the phase noise resulting
DDSM quantization noise would result in error in the FNPLL
output’s phase whose (simulated) PSD would be as shown
in Fig. 4(f).

Inevitable circuit errors result in delays through the divider
circuit blocks that depend on the value of v[n]. These
errors, called modulus dependent delays (MDDs), can be
represented by a non-linear mapping, ∆v[n]. They disturb the
phase of the FNPLL’s output to the tune of a non-linear
function of v[n]. Specifically,

s0(t) = cos

(
2π [N + y(t)] fre f t +

∞

∑
m=0

∆v[n]g(t−nTre f )

)
,

where y(t) is given by (7). Fig. 7 plots the simulated PSD of
the phase noise of the resultant s0(t); MDDs were randomly
chosen according to a Gaussian distribution with a standard
deviation of just 10% of the VCO period. As is evident
from the figure, the MDDs cause both the discrete spikes
to reappear and a significant increase in the phase noise for
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low frequency offsets. This effect is commonly referred to as
quantization noise ”folding over” and is difficult to analyze
and/or quantitatively predict.

While circuit errors e.g., MDDs cause the discrete spikes,
ultimately, the properties of q[n] are to blame. The reasons
are not surprising. Consider the output of the 2nd order
DDSM for m[n] = 0:

v[n] = α +q[n]−2q[n−1]+q[n−2]

. If the table look-up non-linearity were represented by a
simple mapping function, g(v[n]) = (v[n])2, then

g(v[n]) = α
2 +2α

2

∑
m=0

e[n−m]+
2

∑
m=0

2

∑
l=0

e[n−m]e[n− l]

Note that LSB dithering renders q[n] and q[m] jointly inde-
pendent (even if asymptotically as n→ ∞). However, that is
not sufficient to ensure that the autocorrelation of the product
terms in the double summation is not periodic. Consequently,
in spite of LSB dithering, even simple non-linearities such as
squaring can expose underlying correlations and cause spikes
in the PSD of overall phase noise.

A recent technique called ”successive requantization” em-
ploys a Markov chain based quantizer instead of a DDSM
based quantizer to make the synthesizer insensitive to mod-
ulus dependent divider delays [6]. The technique is best
explained by considering the simple case where M = 2p/2.
For simplicity, assume that,

x[n] ∈ {−2p−1, ...,0, ...,2p−1−1}/2p.

Then, the technique quantizes as follows:

v[n] =
1
2
(x[n]+ s[n]) ,

where

2ps[n] =

{
2l[n], if 2px[n] is even,
2l[n]+1, if 2px[n] is odd,

where l[n] is an integer. Note that quantization by only one-
bit is achieved. The technique chooses 2ps[n] according to
the three additional criterion:

1) s[n] is chosen with the goal of minimizing the running
sum of 2ps[n], namely t[n], where

t[n] =
n−1

∑
m=0

s[m].

For example, if t[n] is positive, the technique tries to
choose a negative value of s[n].

2) s[n] is chosen randomly whenever possible.
3) s[n] is chosen such that the E{s[n]2} is a constant ∀n.

Since the first criterion bounds the first sum of 2ps[n], it
can be shown that the power spectral density of s[n] has
a zero at dc [6]. The second criterion ensures that the
autocorrelation of s[n] and hence that of v[n] is not periodic
thereby eliminating spikes in their PSDs. To appreciate the

third criterion, consider the effect of a square non-linearity
on v[n], for the simple case of x[n] = α , a constant:

v[n]2 =
1
4
(
α

2 +2αs[n]+ s[n]2
)
.

By ensuring that E{s[n]2} is a constant ∀n, the PSD of v[n]2

will not exhibit any spikes in its PSD.
Essentially, s[n] is chosen according to the state value, t[n],

of a finite state machine. The transition probabilities of the
finite state machine may vary with n depending on whether
2px[n] is even or odd, implying that the underlying Markov
chain is potentially non-homogenous. However, as long as
the transition probabilities are chosen such that E{s[n]2} is
a constant ∀n, v[n] is insensitive to square non-linearity. The
technique quantizes to large values of M by applying the
procedure recursively (on v[n], on the result of quantizing v[n]
by one-bit, and so on). Furthermore, the technique also can
ensure insensitivity to higher order non-linearities as well.

Note that the shaped quantization noise in this technique is
significantly higher than in the DDSM’s case. Furthermore, it
is not aggressively shaped: the shape of its PSD is similar to
that of a 1st order DDSM, but higher. However, the technique
represents a promising approach to quantization that could
be particularly useful to practical integrated DAC design.

VI. CONCLUSIONS

Digital delta-sigma modulators enable high resolution
digital-to-analog data conversion from simple circuits. How-
ever, limitations of quantization noise shaping, and circuit
errors limit the performance of DDSM based D/A converters.
Recent quantization noise conditioning techniques such as
dithering and have successfully addressed these problems.
Such problems and example conditioning techniques were
described in the context of a delta-sigma modulator based
frequency synthesizer. A few unresolved problems that could
benefit from theoretical advances in the study of quantization
were also identified.
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