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Abstract— The paper considers robust control of 2D linear
systems described by the Roesser model, where information
propagation in each the independent directions is a function of
a continuous variable, and an affine parallelotopic type model
for uncertainty is assumed. Sufficient optimality conditions for
the existence of an LQ state feedback controller are developed in
the absence of model uncertainty and then used to characterize
a set of stabilizing static output feedback controllers for this
system in the presence of parameter uncertainties, resulting in
non-convex conditions parameterized by the weighting matrices
of a quadratic cost function. Replacing these conditions by
convex approximations leads to an algorithm for computing
the stabilizing gain matrix of the controller. The algorithm is
non-iterative and uses computationally efficient SDP solvers.
A numerical example is given to demonstrate the applicability
and effectiveness of the algorithm.

I. INTRODUCTION
Multidimensional systems propagate information in n > 1

independent directions but in this paper attention is restricted
to the 2D case where the dynamics evolve over the right-
upper quadrant of the associated plane. The study of 2D
systems is motivated by many applications in, for example,
image and signal processing and also by systems theoretic
questions that cannot be solved by direct extension of stan-
dard, or 1D, theory. In terms of models for the dynamics,
there is a much wider variety of signals possible where,
for example, information propagation could be functions of
discrete variables in both directions, of continuous variables
in both directions, or a discrete variable in one direction and
continuous in the other.

Consider the case when information propagation in both
directions is a function of a discrete variable, then there
are two extensively studied state-space models [1], [2]. The
Roesser model defines a state vector for each direction of
information propagation whereas the Fornasini-Marchesini
model uses a single state vector. Repetitive processes [3] also
have a 2D systems structure but information propagation in
one of the two directions only occurs over a finite duration. In
control systems terms, repetitive processes do provide phys-
ical applications, such as iterative learning control, where a
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Poland (k.galkowski@issi.uz.zgora.pl

E. Rogers is with the School of Electronics and Computer
Science, University of Southampton, Southampton SO17 1BJ, UK
etar@ecs.soton.ac.uk

2D systems approach is required and this area has recently
seen experimental verification studies [4].

Stability analysis and robust controller design for uncertain
2D discrete linear systems has received much attention.
For example, using eigenvalue sensitivity, results on robust
stability for uncertain 2D linear systems are given in [5],
while in [6] a frequency domain and Lyapunov mapping
approach respectively, were proposed for the robust stability
problem. An LMI approach to robust stabilization has also
been extensively studied, e.g. [7], [8]. The vast majority of
the results currently available on control related analysis of
2D linear systems is for the discrete case or, for repetitive
processes, continuous in one direction and discrete in the
other. This paper considers 2D systems with continuous
dynamics in both directions of information propagation de-
scribed by a Roesser state-space model for which stability
analysis in the presence of parameter uncertainty in the
matrices of the state-space model is considered in [9], where
the uncertainty is assumed to be norm-bounded.

This paper considers the same continuous Roesser state-
space model as [9]–[11] but with an affine parallelotopic type
model of uncertainties. The first set of results develop give
sufficient conditions for optimality of an LQ state feedback
controller and the conditions then used to describe a set
of stabilizing static output feedback controllers. This results
in non-convex conditions, parameterized by the weighting
matrices of a quadratic cost function and application of
a convexifying approximation technique leads to an LMI-
based algorithm for computing the stabilizing controller gain
matrix. The algorithm can be implemented without the need
for iterations and uses computationally efficient SDP solvers.
Finally, an illustrative numerical example is given.

Throughout this paper the notation M > 0 (respectively)
M < 0 is used to denote a symmetric positive-definite
(respectively negative-definite) matrix. Also M ≥ 0 (re-
spectively M ≤ 0) is used to denote a symmetric positive
(respectively negative) semi-definite matrix.

II. PROBLEM FORMULATION AND
PRELIMINARIES

The systems considered in this paper are, in the absence of
uncertainty, described by the 2D Roesser state-space model[ ∂

∂t1
ℎ(t1, t2)

∂
∂t2
v(t1, t2)

]
= A

[
ℎ(t1, t2)
v(t1, t2)

]
+ Bu(t1, t2),

z(t1, t2) = C

[
ℎ(t1, t2)
v(t1, t2)

]
. (1)
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where ℎ ∈ ℝnℎ and v ∈ ℝnv are the horizontal and vertical
state vectors respectively, and u ∈ ℝnu and z ∈ ℝnz are
the input and output vectors respectively. Now, compatibly
partition the state matrix A in (1)[

A11 A12

A21 A22

]
,

and introduce the characteristic polynomial

C(s1, s2) = det

[
s1I −A11 −A12

−A21 s2I −A22

]
, (2)

and the following result gives the necessary and sufficient
condition for asymptotic stability of the systems considered
in this work.

L e m m a 1: [10], [11] The continuous Roesser model
of (1) is asymptotically stable if and only if C(s1, s2) has
no roots, or zeros, in the closed right-half of the biplane
including the points at infinity, that is

C(s1, s2) ∕= 0 if (s1, s2) ∈ ¯̄
D2, (3)

where
¯̄
D2 = {(s1, s2) : Re s1 ≥ 0, Re s2 ≥ 0,

∣ s1 ∣≤ ∞, ∣ s2 ∣≤ ∞}.
The following result provides a sufficient but not necessary

stability condition in terms of an LMI, which is computa-
tionally tractable relative to the condition of Lemma 1.

L e m m a 2: [9], [12] The system (1) is asymptotically
stable if there exist matrices P1 > 0 and P2 > 0 satisfying
the following LMI

ATP + PA < 0, (4)

where P = diag[P1 P2].
If there is uncertainty is associated with the system dy-

namics, one way of modeling this for analysis is to use an
affine parallelotopic type model of the form[ ∂

∂t1
ℎ(t1, t2)

∂
∂t2
v(t1, t2)

]
= A(�)

[
ℎ(t1, t2)
v(t1, t2)

]
+B(�)u(t1, t2),

(5)

z(t1, t2) = C

[
ℎ(t1, t2)
v(t1, t2)

]
,

with variations around a central nominal model defined by
matrices (A,B) along the axes (Ai, Bi)

A(�) = A+
N∑
i=1

�iAi , B(�) = B +
N∑
i=1

�iBi . (6)

Also �i is assumed to be bounded in an interval including
zero

�i ≤ �i ≤ �i : �i ≤ 0 , �i ≥ 0 . (7)

The set of uncertainties is denoted Δ and the finite set of
extremal values, or vertices, defined by

Δv =
{
� =

(
�1 . . . �N

)
: �i ∈ {�i, �i}

}
(8)

Consider application of the static output feedback control
law

u(t1, t2) = −Fz(t1, t2). (9)

to the model with uncertainty. The problem considered in
this paper is to describe in a constructive form the set of
controllers in (9) that guarantee asymptotic stability of (5)
for all uncertainties satisfying (7).

III. LQ OPTIMAL CONTROL FOR 2D ROESSER
MODELS

In 1D linear systems theory the LQR setting gives a con-
structive description of the set of state feedback controllers
in terms of its weighting matrices and hence the solution to
static output feedback problem. In this section we extend this
approach to the 2D Roesser state-space model introduced in
the previous section.

Write (5) as
∂ℎ(t1, t2)

∂t1
= A11ℎ(t1, t2) +A12v(t1, t2) +B1u(t1, t2), (10)

∂v(t1, t2)

∂t2
= A21ℎ(t1, t2) +A22v(t1, t2) +B2u(t1, t2). (11)

and suppose that boundary state vectors ℎ(0, t2) and v(t1, 0)
satisfy

lim
T→∞

T−1
∫ T

0

∣ ℎ(0, t2) ∣2 dt2 <∞,

lim
T→∞

T−1
∫ T

0

∣ v(t1, 0) ∣2 dt1 <∞.

Also define for continuous functions f(ℎ) on ℝnℎ and g(v)
on ℝnℎ the differential operators

ℒvuf(ℎ) =
∂f

∂ℎ
(A11ℎ+A12v +B1u)

(12)

ℒℎug(v) =
∂g

∂v
(A21ℎ+A22v +B2u)

Then the control u(t1, t2) in (11) is admissible if it has
the form u(t1, t2) = '(ℎ(t1, t2), v(t1, t2)), where '(ℎ, u)
is continuous function on ℝnℎ × ℝnv such that

'(ℎ, v) ≤ �(1+ ∣ ℎ ∣ + ∣ v ∣), � > 0, (13)

Also the solution of (10) with u = '(ℎ, u) satisfies

lim
T→∞

T−1
T∫

0

T∫
0

(∣ ℎ(t1, t2) ∣2

+ ∣ v(t1, t2) ∣2)dt1dt2 <∞. (14)

and in this case we write u ∈ Φa.
For given Q > 0 and R > 0, introduce

L(ℎ, v, u) = [ℎT vT ]Q[ℎT vT ]T + uTRu

and the cost function

J(u) = lim
T→∞

T−1
T∫

0

T∫
0

[L(ℎ(t1, t2),

v(t1, t2), u(t1, t2)]dt1dt2
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for (10). Then the admissible control u = '0(ℎ, v) is optimal
if

J('0(ℎ, v)) ≤ J('(ℎ, v)) ' ∈ Φa.

and the following result gives sufficient conditions for opti-
mality.

T h e o r e m 1: Suppose that there exists a function
'0(ℎ, v) ∈ Φa and real-valued functions V1(ℎ) and V2(v)
on ℝnℎ and on ℝnv with the following properties

(i) the functions V1(ℎ), ∂V1(ℎ)
∂ℎ , V2(v), ∂V2(v)

∂v are
continuous on ℝnℎ and on ℝnv respectively,
V1(0) = 0, V2(0) = 0,
(ii)

∣ V1(ℎ) ∣ + ∣ x ∣ ∂V1(ℎ)

∂ℎ
∣ + ∣ V2(v) ∣

+ ∣ v ∣ ∂V2(v)

∂v
∣≤ k(∣ ℎ ∣2 + ∣ v ∣2)

for some constant k, and
(iii)

ℒv'0V1(ℎ) + ℒℎ'0V2(v) + L(ℎ, v, '0(ℎ, v)) = 0;
(15)

ℒvuV1(ℎ) + ℒℎuV2(v) + L(ℎ, v, u)) ≥ 0 (16)

for all (ℎ, v, u) ∈ ℝnℎ × ℝnv × ℝnu .
Then '0(ℎ, v) is the optimal control.

Proof: Introduce

W = lim
T→∞

T−1

⎛⎝ T∫
0

V1(ℎ(0, t2))dt2 +

T∫
0

V2(v(t1, 0))dt2

⎞⎠ .

and integrate this function to obtain

W = lim
T→∞

T−1
T∫

0

T∫
0

[L(ℎ'0(t1, t2), v'0(t1, t2),

'0(ℎ'0(t1, t2), v'0(t1, t2)]dt1dt2, (17)

where the subscript '0 denotes the solution to (10) with
u = '0(ℎ, u). Similarly, integrating (16) for some admissible
u = '(ℎ, v) gives

W ≤ lim
T→∞

T−1
T∫

0

T∫
0

[L(ℎ'(t1, t2), v'(t1, t2),

'(ℎ'(t1, t2), v'(t1, t2)]dt1dt2, (18)

and it follows from (17) and (18) that

W = J('0(ℎ, v)) ≤ J('(ℎ, v)), ', '0 ∈ Φa.

Hence '0 is the optimal control.
To obtain a Bellman function interpretation of this last

result, first note that (17) and (18) can be written as

min
u∈ℝnu

{ℒvuV1(ℎ) + ℒℎuV2(v) + L(ℎ, v, u)} = 0. (19)

and the minimization in (19) gives

u = '0(u, v) = −R−1[BT
1

∂V1
∂ℎ

+BT
2

∂V2
∂v

] (20)

Setting V1(ℎ) = ℎTP1ℎ and V2(ℎ) = vTP2v now gives

u = −R−1BTPx, (21)

where x = [ℎT vT ]T and P = diag[P1 P2] > 0 solves the
algebraic Riccati equation for some matrix R > 0

ATP + PA− PBR−1BTP +Q = 0. (22)

This equation is nonstandard due to the constraints on the
structure of the matrix P and there is no known solution
method. However, a parametrization approach to the synthe-
sis of stabilizing state feedback controllers is possible.

Consider the matrix inequality

ATP + PA− PBR−1BTP +Q ≤ 0, (23)

and pre- and post-multiply both sides by X = P−1.
Applying the Schur’s complement formula to the result of
this last step gives[

AX +XAT −BR−1BT XQ1/2

Q1/2X −I

]
≤ 0,

X = diag[X1 X2], X1 > 0, X2 > 0. (24)

If the LMI (24) is feasible, then we can calculate

K = R−1BTP.

Note that (23) can be now rewritten in the form

(A−BK)TP + P (A−BK) ≤ −Q−KTRK < 0

and hence [9] u = −Kx is a state feedback control
guaranteeing asymptotic stability of (10). In this case the
matrices P and R play the role of parameter matrices and
by varying them we obtain a set of state feedback stabilizing
controllers with various properties.

IV. LQ PARAMETRIZATION OF ROBUST
STABILIZING CONTROLLERS

The following results give sufficient conditions for sta-
bilization of the uncertain continuous Roesser model con-
sidered in this paper. We begin with the following obvious
result.

L e m m a 3: Suppose that there exist matrices H =
diag[H1 H2], H1 > 0, H2 > 0, and F , satisfying the
following system of bilinear Lyapunov inequalities

(A(�)−B(�)FC)TH +H(A(�)

−B(�)FC) < 0, � ∈Δv. (25)

Then (5) with the control law (9) applied is asymptotically
stable for all � ∈Δ .

T h e o r e m 2: There exists a gain matrix F satisfying
(25) if and only if there exist matrices H = diag[H1 H2] >
0, Q > 0, R > 0, and parameter-dependent L(�) such that
the following conditions hold for all vertices � ∈Δv

FC = R−1(BT (�)P + L(�)) , (26)

AT (�)H +HA(�) − HB(�)R−1BT (�)H

+ Q+ L(�)TR−1L(�) ≤ 0. (27)

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

643



Proof: Necessity. Suppose that there exist matrices F, Y
satisfying (25) and hence, since the inequality (25) defines
a negative definite constraint on a finite set of values, this
is equivalent to the existence of matrices Q > 0 and R > 0
such that

AT
c (�)H + HAc(�)

+ Q+ (FC)TRFC < 0, (28)

where Ac(�) = (A(�)−B(�)FC). Rearranging (28) yields

AT (�)H +HA(�) + (FC)TRFC

−(FC)TBT (�)H −HB(�)FC +Q < 0. (29)

or, on setting,

K(�) = FC −R−1BT (�)H (30)

(29) can be written in the form

AT (�)H + HA(�)−HB(�)R−1BT (�)H

+ KT (�)RK(�) +Q < 0. (31)

Define
L(�) = RK(�). (32)

and by substitution in (31) we obtain (26) and (27).
Sufficiency. Suppose there exist matrices H > 0 and F

satisfying (26) and (27). Then it follows from (26) that L(�)
and K(�) are defined by (32) and (30) and hence using (27)
we obtain

AT (�)H + HA(�)−HB(�)R−1BT (�)H +Q

+ LT (�)R−1L(�) = (A(�)−B(�)FC)TH

+ H(A(�)

− B(�)FC) + (FC)TRFC +Q < 0. (33)

Finally, it follows from this last inequality that (25) holds
and therefore by Lemma 3 F is a stabilizing control law
matrix.

This last result can be viewed as the extension of the
results of [13] to 2D linear systems considered in this paper.
There is no known method for solving the nonstandard
system of coupled matrix equations and inequalities (26) and
(27). Next we give sufficient conditions that are convex and
lead to LMI based computation of the stabilizing control law
matrix.

Set X = H−1, Y (�) = L(�)X and apply the Schur’s
complement formula to rewrite (26) and (27) in the form⎡⎣ G(�) XQ

1
2 Y (�)T

Q
1
2X −I 0

Y (�) 0 −R

⎤⎦ < 0, � ∈Δv, (34)

FCX = R−1(B(�)T + Y (�)), � ∈Δv, (35)

where G(�) = XA(�)T + A(�)X − B(�)R−1B(�). These
conditions are not convex due to the last nonlinear equality
constraint, but this can be relaxed using the conservative lin-
earizing technique of [14] which is based on the assumption
that there exists a nonsingular decision variable M such that

CX = MC. (36)

Hence (35) can be rewritten as

ZC = R−1(B(�)T + Y (�)), � ∈Δv, (37)

and using results in [15], (37) has a solution for Z = FM
if and only if

(B(�)T + Y (�))(I − C+C) = 0, � ∈Δv, (38)

where the superscript + denotes the Moore-Penrose inverse.
If (38) holds, the gain matrix is given by

F = R−1(B(�)T + Y (�))C+M−1 (39)

subject to

B(�)T + Y (�) = B()T + Y (), �,  ∈Δv. (40)

Now we have the following corollary of Theorem 2.
C o r o l l a r y 1: Suppose that for some matrices Q ≥

0, R > 0 the system of coupled linear equations and
inequalities (34), (36), (38), (40) with respect to variables
X = diag[X1 X2] > 0, Y (�) and M, � ∈ Δv is feasible.
Then the control law (9) with gain matrix F given by (39)
ensures asymptotic stability of (5) for all � ∈Δ.

The following is an algorithm for computing the stabi-
lizing gain matrixF, which can be applied to a numerical
example using available software such as SeDuMi [17].

A l g o r i t h m 1:
1. Assign matrices Q and r based on LQR and solve the

LMI/LME problem (34), (36), (38), (40) with respect to the
variables X = diag[X1 X2] > 0, Y (�) and M, � ∈Δv.

2. If the LMI/LME problem of the previous step is fea-
sible, compute the static output feedback stabilizing gain
matrix F using (39).

V. NUMERICAL EXAMPLE
Consider the case of (5) when

A11 =

[
0 1
a01 0

]
, A12 =

[
0 1 0 1 0 1
1 0 1 0 1 0

]
,

A21 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0
0 0
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , A22 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
a02 0 0 0 0 0
0 0 0 1 0 0
0 0 a03 0 0 0
0 0 0 0 0 1
0 0 0 0 a04 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
−0.92 −1.4 0.92 −1.4

0 0 0 0
0.65 1.6 0.65 −1.6

0 0 0 0
1.4 −1 1.4 1
0 0 0 0
2 −0.8 −2 −0.8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C =

⎡⎢⎢⎣
0 −1.8 0 1.3 0 2.9 0 4.1
0 −2.7 0 3.2 0 −2.1 0 −1.6
0 1.8 0 1.3 0 2.9 0 −4.1
0 −2.7 0 −3.2 0 2.1 0 −1.6

⎤⎥⎥⎦ ,
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where a01 = −0.42, a02 = −0.1849, a03 = −4.41, a04 =
−4.84. The eigenvalues of the matrices A12 and A22 are
±0.6481i and ±0.43i, ±2.1i, ±2.2i respectively and the
nominal model is not asymptotically stable. Consider the
parameter uncertainties are described by

a0i (1− �i) ≤ a0i ≤ a0i (1 + �i), i = 1, . . . , 4,

�1 = 0.3, �2 = �3 = �4 = 0.5, (41)

i.e. 30% to 50% variation is present. The resulting polytopic
system for the A and B matrices in the system state-space
model has 24 = 16 vertices, and the problem now is
to stabilize this system by applying constant static output
feedback control law. To solve this problem we apply the
algorithm above, we set R = I and include the weighting
matrix Q in the set of LMI variables. The result is

F =

⎡⎢⎢⎣
0.9934 0.1742 0.0881 0.1148
0.1839 1.1862 0.0513 0.0835
0.0991 −0.0249 1.1034 −0.1981
0.0176 0.0234 −0.1483 1.2241

⎤⎥⎥⎦ ,
with Lyapunov matrix P = diag[P1 P2] where

P1 =

[
0.0079 0.0009
0.0009 0.0146

]
,

P2 =

⎡⎢⎢⎢⎢⎢⎢⎣
3.4858 0.2339 −0.4716
0.2339 0.0354 −0.0261
−0.4716 −0.0261 0.6313
0.0018 0.0107 0.0403
−0.1514 −0.0119 0.0424
0.0005 0.0077 0.0019

0.0018 −0.1514 0.0005
0.0107 −0.0119 0.0077
0.0403 0.0424 0.0019
0.0276 −0.0011 0.0089
−0.0011 0.5375 0.0279
0.0089 0.0279 0.0205

⎤⎥⎥⎥⎥⎥⎥⎦ .

The eigenvalues of P are positive and those eigenvalues for
AT

ciP + PAci, where Aci = Ai − BCF, are negative for
all vertices. Hence by Lemma 2 the controlled system is
asymptotically stable for all uncertainties given by (41). The
computations required were undertaken in MATLAB using
YALMIP parser [16] and the SeDuMi solver [17].

VI. CONCLUSIONS AND FURTHER WORK

The problem of robust stabilization for uncertain 2D con-
tinuous linear systems described by the Roesser state-space
model has been considered with an affine parallelotopic type
model of the uncertainty. Sufficient optimality conditions
for an LQ state feedback controller have been developed
in the absence of uncertainty and then used to describe a
set of stabilizing static output feedback controllers in the
presence of uncertainties of the type considered. Also an LQ
parametrization of sufficient conditions for the existence of
static output feedback controllers, which ensure asymptotic
stability of the resulting controlled system has been obtained.

These conditions are expressed in terms of LMI/LMEs and
if they are feasible an explicit expression for the static output
feedback controller gain matrix is available. Finally, an illus-
trative example has been given to illustrate the application
of the results obtained. The results obtained in this paper are
sufficient, and not necessary and sufficient, and hence there
is conservativeness associated with them. Further research
should aim to reduce the conservativeness and also extend
all results to other classes of 2D linear systems.
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