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On asymptotically reconstructing local-state trajectories for 2-D systems
without exploiting input information

Lorenzo Ntogramatzidis and Michael Cantoni

Abstract— The notions of input-containing and detectability —order) Fornasini-Marchesini model [13], governed by
subspaces are developed within the context of observer syn-
thesis_ _for two-dimensional _(2-D) Fornasini-Ma_rchesini models. Tit1,j+1 = A1 Tip1; + Aoz i
Specifically, the paper considers observers which asymptotically
estimate the local state, in the sense that the error tends to TB1 Uit + Bauij, @)
zero as the reconstructed local state evolves away from possibly
mismatched boundary values, modulo a detectability subspace. Yi,j

Ultimately, the synthesis of such observers in the absence of I . . . . .
explicit input information is addressed. The definition of conditioned invariance in [9] is related

therein to the reconstruction of local state trajectories given
I. INTRODUCTION a record of the output, in the caseefactknowledge of the
goundary conditions for (1). The problem of local state esti-

Controlled invariant subspaces were originally introducema,[ion with decaving error in the case of unknown boundar
by Basile and Marro in [1] to solve decoupling and trackingg ying y

problems for one-dimensional (1-D) systems. These su onditions has not been considered. Motivated by this, we

spaces were subsequently studied by Wonham and Morse Ievelop a systematic procedure for the external stabilisation
[33]. Conditioned invariant subspaces for 1-D systems we

of' conditioned invariant subspaces via output injections.
also introduced by Basile and Marro in [1], as the duals otrhls will _Igad to.a n9t|on of 2-Ddetectability subspaces,
) . I.e. conditioned invariant subspace that can be externally
controlled invariant subspaces. The role of such subspacés, .. S . .
stabilised by output injection. An algorithm for computing a

in solving state estimation problems was first investigated 'Qtabilising output injection matrix is also provided in terms

[2]. Later, conditioned invariance was studied by Willems S . MR

: ; f matrix inequalities. The approach is similar to [27], where

in terms of the existence of a class of observers [32] S . . .
nternal stabilisability of output-nulling controlled invariant

Specifically, for any cqu|t|oned mvangpt S.Ub spatahat . tsubspaces is studied. Ultimately, the notion of a detectabilty
can be externally stabilised by output-injection, there exists o .
bspace is linked to the existence of a local state observer

an observer that asymptotically recovers the state modute
S, see_also the textpooks [3, Chapter 4] and [30, Chapte(uiﬂ’jﬂ = Ky wit1+Kowi ji14L1yirr;+LayijiA2)

5]. Unlike the classic Luenberger observer, this class of

observers does not directly exploit the input in reconstructing is required that the size of the estimation eregr; &

the state. The relevance of this for problems in fault-detectiof =, ; — w; ; asymptotically approaches zerodas j — oo,

and isolation is well established, [25], [31]. for some full row-rank matrixQQ and arbitrary boundary

Over the last twenty years, several extensions of imeonditions forz; ; and w; ;. The local state observer (2),
portant geometric concepts, such as controlled invariandie its 1-D counterparts defined in [32], does not exploit
have been proposed for 2-D systems, including the so-call&dowledge of the input. As such, it is structurally different
Fornasini-Marchesini and Roesser models, [9], [20], [21from the Luenberger-type 2-D observers discussed in [4],
While definitions of controlled invariance are not difficultsince its local state does not explicitly depend on the input
to establish for Fornasini-Marchesini models, definitions;; ;. For more details on the synthesis of 2-D observers, see
of conditioned invariance are less obvious because dualigyso [17], [18] and the references therein. As an important
cannot be exploited as in the 1-D case. The definitions afpplication of the concepts described above, we present a
conditioned invariance in [20], [21] have the disadvantagsolution to the so-callednknown-input observatigproblem
of being defined for models with very special structuresfor the standard 2-D system model (2). The relevance in fault
that is, with duality properties absent in the case of thdetection and non-interaction are well known, [6], [7]. In [5],
standard Fornasini-Marchesini model. In [9], a definition o polynomial approach is employed to develop necessary
conditioned invariance is proposed for the standard (firsind sufficient conditions for the solution of this problem

under the requirement that the observer error exhibit dead-
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Notation. Throughoutthis paper, we denote by the set (A4;, As)-invariant for everyn x n matricesA; and A,. The
of positive integers including zero. The symbjgl} stands following lemma provides geometric and matrix conditions
for the origin of the vector spacR™. The image and the for invariance.
kernel of matrix M e R"*™ are denoted byim M and Lemma 2.1:The following are equivalent:
ker M, respectively. Then x m zero matrix is denoted by 1) 7 is (A4, A,)-invariant;

0, xm- We also denote by/ " and by M the transpose and 2) [A1 A (T ®DT)C T, e, Ayz+ Ay € J for all

the Moore-Penrose pseudoinverseldf respectively. Given z,y € J;

a subspacey of R™, the symbolM 1) stands for the 3) There existL,, L, € R("=7)x(n=7) sych thatQ 4; =
inverse image of) with respect to the linear transformation L;Qforie{1,2},ie,Q[A Ay]=[Li L2]Qp,
M. For the sake of brevity, we defing/,, := diag(M, M), where Q € R("=")*" is a full row-rank matrix such
and, accordingly, given a subspack of R", the symbol thatker Q = J.

J» will identify the subspacef ®7 of R*". Finally, given  The proof of Lemma 2.1 follows straightforwardly from the
the vector¢ € R, the symbol¢/J denotes the canonical proof of Lemma 2.1 in [27]. The following theorem is the
projection of¢ on the quotient spac&™/J. 2-D counterpart of a fundamental result drinvariance (see
[1]), concerning the decomposition of a 1-D system matrix
with respect to an invariant subspace.

Theorem 2.1:Let J be anr-dimensional subspace &f*.

We bedin b li limi " The following statements are equivalent:
ceps for the autonomous Fomasini-Marchesini (FM) modell) T8 SUDSPACE s (s, Ay -invariant;
P 2) With respect to any basis iR™ whose firstr vectors

Tit1j+1 = A1 Tig1; + Ao x4 11, ?3) spanJ, the linear transformationg; and A, are given
respectively by the block-triangular matrices

II. INVARIANT SUBSPACES FOR
FORNASINI-MARCHESINI MODELS

where, for all integers, j, the vectorz; ; € R™ is thelocal

stateof the system. Hered,, A, € R"*". Defining for each At AP d Ay AP 4
. 0 A22 an 0 A2 |- (4)
k € Z the separation set (n—ryxr A7 (n—r)yxr 413
w“ The proof is a straightforward consequence of Lemma 2.1,
Sk=A{(,j) EZXZL]i+j=k}, see also the proof of Theorem 2.1 in [27].
and the corresponding instance of gjiebal state A. Invariant Subspaces and Local-State Trajectories
x, & {z;; € R™| (i,j) € Sk}, In this section the concept @¢fA;, A,)-invariance is used

to analyse properties of the local state trajectories generated
it is easily seen from (3) that), can be uniquely expressed py (3). Consider anA;, A,)-invariant subspacg’. A bound-
in terms of Xy, 1, [13]. In particular, if we fix the values of 4y condition{z; ; = b;; € J| (i,5) € So}, gives rise to
x;,j 0n Sy, i.e. fix Xy as a boundary condition, (3) uniquely ;" ¢ 7 for all (i,j) € S,. In fact, in view of Theorem
determines;, for k > 0 (i.e., z;; for i +j > 0).! Indeed, 21 4 similarity transformatiors € R"*" exists such that
these are the boundary conditions usually associated with th eachi € {1,2} there holds
FM model (3). In the sequel, given a subspa®eC R", by ) R
a W-valued boundary condition we intend the det, ; € A ¥ gA 51 = Ajt {1}2 ] .
W | (i,5) € So}. Similarly, for eachk > 0, the global state ’ ’ O(n—ryxr AZ?
A}, is said to beV-valued whene; ; € Wor all (i, j) € Sk. \aprix § is any basis matrix oR™ adapted tq7, i.e., such
We also define the set of indexes for which the local statg .+ its first columns spaw. Equivalently,S can be con-

x;,; of (3) is uniquely determined by fixing, as boundary structed as the square non-singular maffixe S, where

condition: . .
n ker Q = J and the rows of5. are linearly independent from
Sy = U Sk={(,j) €ZxZ]|i+j >0} those of@). With respect to this new set of coordinates, model
keN (3) can be written as
A sub;pach of.R" is said to be(AhAg)—!nvarlant if T ] At 412 oy
J is A;-invariant in the usual 1-D sense fore {1,2}; A 0 A%z vy
1,7

¢ i x 1,
e, Ajz € J foral z € J andi € {1,2}. The 1l ”/] (5)
notation A; 7 C J is also commonly used to denote + [Az AQQQ} {x;‘;jﬂ }
this property. For example, the subspa¢é$ and R" are 0 A Lij+1

1As shown in [14], other separation sets can be defined so that bounda'lar\yny boun(/j/ary Condltl_or,]{mi’j = bi’j €J | (Z’ ‘7) < /,SO} IS
conditions specified over them uniquely determine a local-state trajecto§UChH thatfi,j = 0 for (i,7) € So. Therefore, by (5)451-,3- =0
solution of (3) over a region df x Z. An interesting and useful example is for all (i,j) € S, which implies thatz; ; € 7 for all

. def .o . . ) )

the separation se, = {(”) € {0x[1, 00) U[l’oo)xio}}’ whichwith -, '+ = S . In the basis corresponding & whereby| i/ | =
corresponding boundary conditions uniquely determings for (i, j) € Tij

1,7
;o o
Sy %N x N\ {(0,0)}. Most of the considerations in this paper can be> Zi.j: the component; ; is the projection of the local state

adapted to such separations sets. z;,j onto the invariant subspacg, while 27’ ; is the canonical
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projection on to the quotient spa' /7. Thus,we refer to is asymptotically stable;

x; ; of z; ; as theinternal (or inner) componendf the local  externally stable if the external dynamics governed by
state (with respect t¢/), and toz;; of z; ; as theexternal 5y are asymptotically stable; i.e., the corresponding pair
(or outer) componenof the local state (with respect t@). (A22, A22) is asymptotically stable.
Consider now a boundary condition that is ptvalued,

, et so that||X{|| # 0. It follows from (5) that|X}/|| — 0 if,
_ With [|X]| = sup,ez [|2r—n.nl, the system model (3) 5nq only if, the pair 422, A2?) is asymptotically stable, and
is said to be asymptotically stable if for any boundary, this case, the elements of the global stajeassociated
condition satisfying|Ay|| < oo, the Corr_esponding Sequenceyith (3) approach the invariant subspage ésk = oo
{ll%:[1};Z, converges to zero [13]. This property is clearlyginayy ‘in view of the discussion above, note that the model
invariant under coordinate transformation and with a sligk(ts) is asymptotically stable if, and only if, anyA;, A,)-

abuse of nomenclature, the system matrix fali, A2) IS jhyariant subspace is both internally and externally stable.
called asymptotically stable in this case. It is well-knownpo following corollary will be important in the sequel.

that the pair(4,, A2) is asymptotically stable if, and only  cogjlary 2.1: Given an r-dimensional subspacg’ of
i, R™, let @ € R™")*" pe a full row-rank matrix such
det(I, — Ayzo — Asz1) 0 V(z1,2) €P (6) thatker @ = J. ThenJ is an externally stablgA;, As)-
invariant subspace if, and only if, an asymptotically stable
where 3 = {(¢1,¢2) € Cx C | [(2] <1 and [¢2| < pair (Ly, L») exists such thaQ A; = L; Q for i € {1,2}.
1} is the unit bidisc [13, Proposition 3]. Various, moreproof: With respect to a basis dR™ adapted to.7, a
computationally tractable, sufficient stability conditions havenatrix whose columns spad is . I<r | and therefore
been propos_ed over the last two de_cades, m_terms of Lyas _ O L] is @ full(nro(/)vﬁank matrix such
pmu{;:)i\(/:eesqusitleogs anldglor gpelctrﬁl radius condltll_ons of certa{ atker Q — 7. Writing the identitiesQ A; = L;Q for
' 9 [ : ! ]'. n.t e very recent literature, new {1, 2} with respect to this basis yields
necessary and sufficient criteria have appeared for asymptotic
stability in terms of conditions that have a more complex Al AR
structure, but that can be checked in finite time, see [34], 0 A22
[12]. For the sake of argument and clarity, however, we ‘
limit ourselves to recalling and using the following simpleleading toL; = A?? for all i € {1,2}. [ |
sufficient condition for asymptotic stability, expressed in
terms of a linear matrix inequality (LMI): . o o
Lemma 2.2:([19]) The pair (A, A5) is asymptotically Consider the Fornasini-Marchesini model (1) where, for

stable if two symmetric positive definite matricéy and @l integersi, j, vectorz; ; € R™ is the local statey;, ; € R™
P, exist such that: is the control inputy; ; € R? is the output,A;, € R"*" and

By, e R™™ for k € {1,2}, C € RP*™ and D € RP*™,

B. Internal and External Stability of Invariant Subspaces

[0 1] =L, [0 I],

IIl. CONDITIONED INVARIANT SUBSPACES

T . . "
diag(Py, Py) — Air (PL+ P)[A; As]>0.  (7) De'fm|tt|;)n 311:'15[9]) The subspacé& C R" is conditioned
The LMI condition in Lemma 2.2 is used to develop amvarlan or ()

procedure for the computation of output injection matrices Au(SpNker Cp) C S, 9)

that stabilise the external dynamics of conditioned invariant

def def .
and input-containing subspaces, which are defined sh0rtly\.’vr];_er:eAHt:f[A1 d‘.étl? ) C(;D. N d!agEC, g) andSE., :|S@§' d
The stability of (3) can be studied in terms of two parts, € set of condilioned invariant subspaces 15 closed under

with respect to a giverA,, A,)-invariant subspacey. In Subspace intersection but not under subspace addition. Its

particular, as shown in [27], (3) is asymptotically stable ifsmalle_zst element i40}, its Iar_gest element IR™. n the
and only if the two matrix pairgAll, All) and (A22, A22) following lemma, the most important properties of 2-D

. conditioned invariance are given.
are each asymptotically stable. Moreover, wheff-&alued ) . . n
boundary condition is imposed, for al > 0 the global Lemma 3.1:Let S be ans-dimensional subspace &",

. . i T (n—s)xn _ :
state X}’ associated with the external dynamics (5) satlsﬁe%nd Iet_QSETIi foll witr)le athtJIInzovr\]/tragf matri|\>/< Isun(j;h that
[IX/]] = 0. Hence, the internal dynamics Qh satisfy er @ =S. The fo 9 9 S_"fl € e_ S _e equivaient.
. . 1) the subspacé is conditioned invariant for (1);
Ty = Al @iy + Ay @ 0. (8)  2) there exist matrice§ = [I'; T'y] andA = [A; As]

SO _ _ —with I'; € R(v=8)x(n=3) gnd A, € R(*=$)%P for 4
If (A}', AL') alone is also asymptotically stable, then the (1,2} — such that !

global statet; associated with (8) satisfigst} | — 0, and
therefore alsd|Ay|| — 0. QAy =TQp +ACp; (10)
Definition 2.1: Ther-dimensional 4, A )-invariant sub-

. o o _ np
space is said to be 3) ?EL?::?E;? matrdxG = [G7; G2] —with G; € R
internally stable if the internal dynamics governed by (8) are

asymptotically stable; i.e., the corresponding gait!, A1) (Au+GCp)Sp C S, (11)
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Proof: 1) = 2). Inclusion (9) can be written in matrix
notation asker Cker Q[A; As]. Hence, matrices

D

I € R»=9)x2(n=s) and A ¢ R(»=)*2r exist such that
Q[Al AQ] :FQD +AC,.
2) = 3). Equation (11) follows from (10) with ang
such thatA = —@Q G. Such a matrixG always exists as)
is of full row-rank.
3) = 1). This follows from the definition. |

Remark 3.1:Noticethat property2) in Lemma 3.1 can be
written equivalently as

QAZ:F1Q+A10 fori€{1,2}.

As a consequence, inclusion (9) in Definition 3.1 can also

be written asA; (S Nker C) C S for ¢ € {1,2}, which

coincides with the definition of 2-D conditioned invariance®V

given in [9]. Moreover,3) in Lemma 3.1 is equivalent to
(A;+ G, CYSCS forie{l,2}.

This means tha$ is conditioned invariant for (1) if and only
if there exists an output-injection matrix = [G; G3] €
R™*2P such thatS is an (A4; + G1 C, Ay + G5 O)-invariant
subspace.

A. Construction of Stabilising Output-Injection Matrices

pairs(T", A) and(G, f) satisfying (12) and (14), respectively.
Given a pair{G, T') such that (14) holds, then (12) is satisfied
with I' = T and A = —Q G. Conversely, given a pair of
matrices(I", A) such that (12) holds, then (14) is satisfied
with T' = T" and with anyG such thatA = —Q G. As such,
no generality is lost by assumidg= I, and by representing
the set of all output-injection matrices associated with the
conditioned invariant subspac8 as the set of matrices
G € R™? satisfyingA = —Q G, whereA € R("—)x2P jg
any matrix for whichl' € R("—#)x2(n—s) exists so that (12)
holds. For any pai(T’, A) such that (12) holds, the solutions
of the linear equationl\ = —Q G are parameterised as

G =Gy +QU, (15)

hereGy £ —QT(QQT) ! A, matrix(2 is a basis oker Q

and U is an arbitrary matrix of suitable size. Hencg,
represents a second degree of freedom in the construction
of the output-injection matrix associated wif, that can

be exploited to stabilis& internally. This second degree of
freedom only disappears f& = {0}; in fact, in this case

Q € R™*"™ leads toU = 0. With reference to the discussion

in Section Il, note that withS = Lz; , where the rows of

S. are linearly independent from those @f we have that

for all ¢ € {1,2}

Our aim now is to establish a procedure that enables an I 1
output-injection matrixG to be determined such thétisan 5 (4, + G, 0) S~ = { A (K, U) Aé2(K7 U) } . (16)
externally stablé A, +G, C, Ay +G4 C)-invariant subspace. 0 AT(K,U)

As for the 1-D case, we say thatis externally stabilisable Equation (16) expresses the fact that, as repeatedly men-
if we can find an output-injection matri& such thatS is an  tioned,S is an(A; + G, C, Ay + G, C)-invariant subspace.
externally stablé A; +G1 C, A;+G C)-invariant subspace. The dependence of matricés !, A}? and A?? uponU and

To find all the output-injection matrices associated withie expresses the fact thdf and K are the two degrees
the conditioned invariant subspace let I" and A be such of freedom that can be used to assign theer dynamics
that (10) holds, which can be written as the linear equatiopf S by modifying A!'(K,U) and to assign thexternal

Q» dynamicsof S by modifying A??(K, U). Importantly, these
QAy = [ A ] { c, } : two procedures can be carried out independently; in fact,

. . . as the following lemma explains, the choice &f affects
This equation can be solved fér and A. The solutions of A2 (K, U) but not A1 (K,U), i € {1,2}. Vice-versa, the
(12) are given by choice of U affects 1A}1(K, U) but not A??(K,U), i €

12)

T
Q {1,2}.
[T A]=QA, { Cz + KA, (13) Lemma 3.2:For all i € {1,2}, the matrixA??(K,U) in
H 11
where H has linearly independent rows and(leti)ddoes got&j(epend di, and the matrbxA,;” (K, U) does
= im | 9" |, while K i bitrary matrix of re crore oo -
ker = im | °" |, while K is an arbitrary matrix of tphe proof follows the same lines of the proof of Lemma 3.3

suitable size. As it will become clear in the sequél, in [27]. Now we want to find a method to design the output-
represents a first degree of freedom in the constructiqnjection matrixG = [G; G:] such thatS is an externally
of the output-injection matrix, that can be exploited t0stable(A; + G, C, Ay +G, C)-invariant subspace; i.e., such
externally stabilise the 2-D conditioned invariant subspacgat there exists an asymptotically stable pdir, I'y) for

S. Notice that in the case whel2? | is full-rank, the only - which Q (4, + G C,) =T Qp.

For a given a conditioned invaria®, write (13) as

.
solution of (12) is[I" A] = Q A, [g;] , and this degree [ - ek "
I To Al=[W Vo V|+K[H H, H], (17)

of freedom disappears.

L _ 1t _
By (11),I' = [T} I';] exists such that where[Vi Vo V] =QA, [?,D} and[H, H, H]
= H are partitioned comformably withl'y T A], i.e.,
QAn+GCo) =T, } (14) I, =V, + KH,; for i ,2and A = V + KH. If
or, equivalently, such that) (4; + G;C) = I;Q, for S, + ker C,, = R?", there is only one solution to (12),

i € {1,2}. We now investigate the relation between theso that there are no degrees of freedom in the choice of
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the pair(I'y,T'2). In this case, if(T';,T'2) is asymptotically closed under subspace intersection. The same is not true for

stable, then with the corresponding = V, the matrix subspace addition. This is due to the fact that the Grassman

Gr £ —-QT(QQT)™'A = [Ga1 Gaz] is such that manifold of R™ is a non-distributive lattice with respect to

S is an externally stablgA; + Ga1C, A2 + Gp2C)-  the operations of sum and intersection (and with respect to

invariant subspace. On the other hand, if the pBir,I';) is  the partial ordering given by the standard subspace inclusion

not asymptotically stable, the subspagds not externally C), [3]. As a result of these considerations, it turns out that

stabilisable. the set of input-containing subspaces for (1) is a modular
Now, whensS,, + ker C,, C R?", the problem we need lower semilattice with respect to subspace intersection. Thus,

to solve is to find a matrixx’ such that the resulting pair the intersection of all input-containing subspacesXbfis

(T'1,T) = (Vi+ K Hy,Vo+ K H,) is asymptotically stable; the smallest input-containing subspace3pfand is usually

the corresponding\ = V + K H, for which (I',A) is denoted byS*. A simple algorithm for the computation of

a solution of (10), is such thafy, £ —QT(QQT)"'A, S*is given below. This algorithm extends Proposition 3.4 in

yielding Q (A, +GAC,) =T @y, so thatS is an externally [9] to non-strictly proper systems.

stable(A; + Ga,1 C, A2 + Ga 2 C)-invariant subspace. Algorithm 4.1: The sequence of subspacS’);cy de-
Towards characterising a subset of such matrigsve scribed by the recurrence

can virtually expolit any stability criterion for 2-D Fornasini-

Marchesini models. As mentioned, necessary and sufficient — On

conditions have recently appeared in the literature that charS’ = [ Ay By | ((82‘1 ®R3™)Nker [ Cp Dy | )7

acterise stability in finite terms, [12], [34]. For the sake

of simplicity, however, we consider the sufficient conditionfor ¢ > 0, is monotonically non-increasing. An integer

recalled in Lemma 2.2, whose structure appears to be mubl<n — 1 exists such thatS**'=8*. For suchk, the

less involved. Let us rewrite this condition for asymptotiddentity $* =S* holds.

stability in Lemma 2.2 for the paifT’;, ;) as For input-containing subspaces, a generalised version of
T Lemma 3.1 holds.
[ %) \ 9 i) } B { ng } U[T Iz ]>0, Lemma 4.1:Given thes-dimensional subspacg of R",
2 let Q € R(=)x" pe a full row-rank matrix such that

for some® £ P, > 0 and¥ ¥ P, + P, > 0. Standard ker @ = S. The following statements are equivalent:
manipulation and’; = V; + K H;, for i = 1,2, yield the 1) the subspace€ is input-containing for (1);

equivalent condition 2) two matrices’ € R("=#)x2(n=s) gnd A € R(»—*)x2p
> 0 (Vi +0H)T exist such that
0 v—0 (U Vo +©Hy)" | >0(18) Q[AH BH]:F[QD 0}—1—1\[0,3 DD];(lg)
UYVi+0OH, VYVy,+0H, v

. X2 .
for some® > 0, ¢ > 0, and © of suitable dimensions, 3) amatrixG & R™** exists such that

where® = ¥ K. We have just proved the following result om

Theorem 3.1:Let S be a conditioned invariant subspace [ Au+GCo By +,G Dy | (SD SR ) €S (20) ,
for (1). Then, S is an externally stabilisable conditioned Proof: The result follows in the same way as the result in
invariant subspace if there exiét= &7 >0, ¥ = ¥7 > Lemma3.l. _ o n
and® of suitable dimensions such that (18) holds. Moreover, Following the procedure outlined for 2-D conditioned in-
given a triple(©, @, ¥) in the convex set defined by (18), gvariantsubspaces, to find the set of ouput-injection matrices

matrix K for which the pair(T';, T'») is asymptotically stable @ssociated with the input-containing subspatewe first
is given by K = &1 ©. solve (19) with respect td' and A, obtaining

IV. DETECTABILITY SUBSPACES ANDLOCAL STATE
OBSERVERS

Now we turn our attention to input-containing subspaces, )  Top o )
which are particular types of conditioned-invariant subWhere_H is full ro-vv-rank,.ker H =1m [QD DDJ’ andK is
spaces. These are useful for various filtering/estimation proBn arbitrary matrix of suitable size. Using (20), we compute

T
T A]-0 A BH][CC%D K ] LK H.

lems, including the construction of local state observerie solutions ofA = —QG asG = Gx + QU. As for
without access to the system inputs. conditioned invariant subspaces, represents the degree of

Definition 4.1: We define aninput-containing subspacg freedom that can be used to assign the external dynamics of
for (1) as a subspace @™ such that the input-containing subspac® e.g. by means of an LMI

condition similar to that given in Theorem 3.1. As such, we
[ Ax By | ((SD &R*)Nker [ C, Dy ] ) cS. say thatS is a detectability subspace if an output-injection
As for the 1-D case, it is easy to see that the intersectianatrix G exists (or, equivalently, ifX’ exists) such that (20)
of two input-containing subspaces is input-containing. lholds andS is an externally stabléA; +G; C, Ay +G2 C)-
follows that the set of input-containing subspaces for (1) iswariant subspace. It can be straightforwardly established
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that an exact equivalent of Theorem 3.1 holds for detectabiproblems, fault-detection and identification, non-interaction

ity subspaces by simply writing (17) with control. Consider the Fornasini-Marchesini model
B 0 0o 1 Tip1,j41 = A1 Tiq15 + A2 x4 511
(Vi Vo V]=Q[ Ay By | P (21) +B1uiy1,j + Bau; i1
Cr Dp (22)

Yij = Cwij+ Dui,

and ker[H;, H, H] = im gD DO J Detectability zij = Rayj +Su

D D
input-containing subspaces can be linked to the existence ghere, for all intgersi, 7, vector u; ; € R™ represents an

certain observers [28]. Consider a syst&hgoverned by a jnput which is not accessible for measurement. The variable
FOI’naSIm-MarChesml model (1) GIV?n a SUbSpSCBf Rn, yz,] ERPl represents an Output that can be measured and
the 2-D systen®, ruled by (2) is said to be a§-quotient  the variablez;; € RP> is an output that we want to
observer if for any boundary condition Gt and ¥, the  estimate on the basis of the measuremgnfll matrices

xi; of ¥ modulo the components of this vector ¢h In  the block diagram depicted in Figure 1. Let the obse®gr
other words, on the basis of the observatignghe vector pe described by the equations

w;,; asymptotically converges to; ;/S, as the indexesand

j evolve away from the boundary, regardless of the boundary Witij+1 = Kiwiprj + Kowij
conditions of® and X,,. +L1yiv1,5 + L2 i1, (23)
Obviously, given an arbitrary subspaceof R", an S- Gj=Muwj+Ny;

guotient observer does not necessarily exists. But if this - .
aglﬁl let§ denote the overall system from the inputo the

subspace is a detectability subspace, the existence of such ) te With the choi f the struct £ th
observer is guaranteed. L@tbe a full row-rank matrix such outpute := z — . Wi € choice of the structure of the
thatker Q = S. Define the new variable, ; = Q ;. —wi, observerX,, the overall system is governed by

along with the vectorsi(i,j) = [2]; =, =/, 4], [$i+1,j+1:| _ [ A 0 Hx”l’j}r{ A2 0 Hxi’j*l}
° -

ﬂ(l,j) = [ui)j ul—'il,j U;)errl]T and CZJ(Z,]) = wi+1,j+1 L1 C Kl wi+17j L2 C K2 wih7‘+1
[wi; wly; w17, (i,5) € S4. LetT and A be such B, Bo
that (19) holds. Let system (2) be defined By, = I" and + {L1 D] Uit1,57+ [LQD} Wij+1,

Ly = A. Itis found that T
€ij = [R— NC —M] |: J :| +(S*ND)’LLZ,]

Cit1,j+1 = QTig1j4+1 — Wit1,j+1 Wi,
—QGCp (i, j) — QG Dpufi,j

Q[A4+GCy B,+GD,] {

G e
] e C BN

S R

=Tiei15+T26 541, 2o

where (20) has been used. Moreover, sifds a detectabil-
ity subspace, the pai(l'y,T'z) is asymptotically stable.
Therefore, the estimation error converges to zero as the inde
(1,7) evolves away fromSy, so thatw;; asymptotically

converges taQ z; ;. Sinceker Q = S, this means that, .~ _. )
recovers the external componentsagf; with respect taS. in Figure 1, such that, recovers _the .Iogal state; ; with
’ reater accuracy as the spatial indgxj) evolves away

Note that the characterisation of external stabilisabilit 1om Sy, i.€., such that for any boundary conditions Df

for conditioned invariant and input-containing subspaces IS . . o
P 9 P dX, the estimation erroe; ; converges to zero a8, j)

essential in employing these ideas in the construction g . . . T

evolves away frong,. This problem is equivalent to finding
local state observers. Indeed, the fact that the subsface . )
L . - an observerX, such that the input. has no influence on
is input-containing alone can only guarantee that gives

rise to an estimation error that only depends on the boundathe outpute. The case in which the observer is dead-beat,

.. % in which the estimation error goes to zero within a finite
conditions. ThereforeYX, can only guarantee that when -
. L . number of steps for any boundary conditionsXbfand 3,
wij; = Qu;; for (i,j) € S, then the estimation error is

: . . was completely solved in [5] using polynomial techniques.
identically zero, which means tha ; = Qz; ; forall Sy "y 0 folﬁowin)g theorem,[a]1 solu%i(?n )i/s provided fo? the
unknown-input observation problem when only asymptotic
convergence to zero of the estimation error is required. The
In this section, we use the geometric notions developed solution is constructive, in the sense that a sufficient solv-
far for the solution of the unknown-input observation probability condition is presented that guarantees the existence
lem, which plays an important role in signal reconstructiomf an unknown-input observer that provides an asymptotic

Fig. 1. Block diagram of the unknown input observation scheme.

XRougth speaking, th@nknown-input observatioprob-
lem consists of finding-, ruled by (23) and connected as

V. UNKNOWN-INPUT OBSERVERS
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estimate ofz. The observer model matrices are explicitlylet alsos(s, j)

derived.

Theorem 5.1:Let §* be the smallest input-containing
(1). The

subspace of the Fornasini-Marchesini model
unknown-input observation problem admits solutions if

1) ker[R S| 2 (S*®R™)Nker[C DJ;
2) S* is a detectability subspace.

Proof: Let @ be a full row-rank matrix such thater Q =
S*. Condition (i) implies that a paif®, ¥) exists such that

[R S]=¢[Q 0]+¥[C D]. (24)

The solutionsd and ¥ of (24) are parameterised as

Q@ 0

(o w)=[r ]2}

;
} +KH,

where the rows off span the null-space and

K is an arbitrary matrix of suitable size.
the map gg is epimorphic. Wheri C D ] is full row-
rank, this condition is equivalent t6¢'S* + im D = RP!
or alternativelyS* + C~'im D = R"™.2 Notice also that
equation (24) can be equivalently written as

[Rp Sp |=@,[Qp 0]+9,[Cr D, |.(25)
fQT CT

. . QL C PT .
only if such is the kernel o OD S$ } it turns out that in
the case wher€' S* +im D = R ,Dequation

Now, since obviously the kernel } is zero if and

QA By |=T [Qp 0]+A[Cp Dy |

admits a unique solution, so that the four matrites\, ¢
andV¥ can be uniquely determined. Sin§e is a detectability
subspace, there exists an output-injection maffiguch that
(20) holds with an asymptotically stable pdir,,T'2). We
show that the dynamical systefy, ruled by (23) withK, =
Ty, L = —Q Gy, (k€ {1,2}), M = ®, andN = ¥ solves

the unknown-input observation problem. First, note that i
view of (24)
ei,j = [R—NC —M] |: i":] :| +(S—ND)'I.LZ'J'
2,

= (R — \I/C)xi,j — <I>wm- + (S — \IJD)’LLLJ'

=([R S]-¥[C D])[ui:;]—cbwi,j

=¢[Q 0] [zij } —Qw; ;= 2(Qui; — wij)-
Definee; ; := Qu;; — w;; using the same notation of

Section IV. Given the signaé : S, — R" for someh,

Recall thatC—'im D = {z € R” |C'z € im D}.
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CtQT CT:|
0 .DT
urthermore, th

matrices® and ¥ satisfying (24) are unique if and only if

T T

Z(s); si1y sija]T It follows that

Eitl,j+1 = Q$i+1,j+1 — Wit1,5+1

Q[ Ay B | 307 | - Tatid)
+QG1 (Cxit1,j + Duiyj)
+Q G2 (Cxijy1 + Dujjy1)

~Q([4n Bul+GlOr D)) 507
_F@(Zaj) o
—T[Q 0] [Zgi” —T&(, 5)

=T1¢ei41,5 +T2g; j41.

Hence, the signal; ; is independent of;; ;, and since; ; =
® ¢, 4, such is also the estimation errey;. It follows that
if i; = zi; for all (4,5) € Sy, then(;; = 2z ; for all
(i,7) € S4. Moreover, in view of the asymptotic stability
of the pair (I'y,T'y), it also follows that for all boundary
Ronditions¢; ; and, ;, (i, 7) € So, the estimation erroe; ;
converges to zero &, j) moves away fron8,. |

VI. CONCLUDING REMARKS

The paper develops notions of conditioned invariant and
detectability subspaces for 2-D Fornasini-Marchesini models.
By contrast with earlier work, the development here leads
to an LMI based procedure for the synthesis of observers
which asymptotically estimate the local state of a standard
Fornasini-Marchesini model, in the sense that the error tends
to zero as the reconstructed local state evolves away from
unknown boundary conditions. The geometric notions and
results presented here complement those in [27], where
notions of controlled-invariance and stabilisability are de-
veloped within the context of 2-D disturbance decoupling
problems. It is expect that the results of this paper will
lead to 2-D extensions of techniques for the detection and
identification of faults, as developed in [25] and [31].
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