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Abstract— The notions of input-containing and detectability
subspaces are developed within the context of observer syn-
thesis for two-dimensional (2-D) Fornasini-Marchesini models.
Specifically, the paper considers observers which asymptotically
estimate the local state, in the sense that the error tends to
zero as the reconstructed local state evolves away from possibly
mismatched boundary values, modulo a detectability subspace.
Ultimately, the synthesis of such observers in the absence of
explicit input information is addressed.

I. I NTRODUCTION

Controlled invariant subspaces were originally introduced
by Basile and Marro in [1] to solve decoupling and tracking
problems for one-dimensional (1-D) systems. These sub-
spaces were subsequently studied by Wonham and Morse in
[33]. Conditioned invariant subspaces for 1-D systems were
also introduced by Basile and Marro in [1], as the duals of
controlled invariant subspaces. The role of such subspaces
in solving state estimation problems was first investigated in
[2]. Later, conditioned invariance was studied by Willems
in terms of the existence of a class of observers [32].
Specifically, for any conditioned invariant subspaceS that
can be externally stabilised by output-injection, there exists
an observer that asymptotically recovers the state modulo
S; see also the textbooks [3, Chapter 4] and [30, Chapter
5]. Unlike the classic Luenberger observer, this class of
observers does not directly exploit the input in reconstructing
the state. The relevance of this for problems in fault-detection
and isolation is well established, [25], [31].

Over the last twenty years, several extensions of im-
portant geometric concepts, such as controlled invariance,
have been proposed for 2-D systems, including the so-called
Fornasini-Marchesini and Roesser models, [9], [20], [21].
While definitions of controlled invariance are not difficult
to establish for Fornasini-Marchesini models, definitions
of conditioned invariance are less obvious because duality
cannot be exploited as in the 1-D case. The definitions of
conditioned invariance in [20], [21] have the disadvantage
of being defined for models with very special structures;
that is, with duality properties absent in the case of the
standard Fornasini-Marchesini model. In [9], a definition of
conditioned invariance is proposed for the standard (first
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order) Fornasini-Marchesini model [13], governed by

xi+1,j+1 = A1 xi+1,j +A2 xi,j+1

+B1 ui+1,j +B2 ui,j+1, (1)

yi,j = C xi,j +Dui,j .

The definition of conditioned invariance in [9] is related
therein to the reconstruction of local state trajectories given
a record of the output, in the case ofexactknowledge of the
boundary conditions for (1). The problem of local state esti-
mation with decaying error in the case of unknown boundary
conditions has not been considered. Motivated by this, we
develop a systematic procedure for the external stabilisation
of conditioned invariant subspaces via output injections.
This will lead to a notion of 2-Ddetectability subspaces,
i.e. conditioned invariant subspace that can be externally
stabilised by output injection. An algorithm for computing a
stabilising output injection matrix is also provided in terms
of matrix inequalities. The approach is similar to [27], where
internal stabilisability of output-nulling controlled invariant
subspaces is studied. Ultimately, the notion of a detectabilty
subspace is linked to the existence of a local state observer

ωi+1,j+1 = K1 ωi+1,j+K2 ωi,j+1+L1 yi+1,j+L2 yi,j+1.(2)

It is required that the size of the estimation errorei,j
def
=

Qxi,j − ωi,j asymptotically approaches zero asi+ j → ∞,
for some full row-rank matrixQ and arbitrary boundary
conditions forxi,j and ωi,j . The local state observer (2),
like its 1-D counterparts defined in [32], does not exploit
knowledge of the input. As such, it is structurally different
from the Luenberger-type 2-D observers discussed in [4],
since its local state does not explicitly depend on the input
ui,j . For more details on the synthesis of 2-D observers, see
also [17], [18] and the references therein. As an important
application of the concepts described above, we present a
solution to the so-calledunknown-input observationproblem
for the standard 2-D system model (2). The relevance in fault
detection and non-interaction are well known, [6], [7]. In [5],
a polynomial approach is employed to develop necessary
and sufficient conditions for the solution of this problem
under the requirement that the observer error exhibit dead-
beat dynamics. The conditions involve Bézout equations,
which can be difficult to solve. In this paper, the unknown-
input observation problem is considered under the weaker
requirement that the estimation error only asymptotically
converge to zero away from the location of the unknown
boundary conditions.
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Notation. Throughoutthis paper, we denote byN the set
of positive integers including zero. The symbol{0} stands
for the origin of the vector spaceRn. The image and the
kernel of matrix M ∈R

n×m are denoted byimM and
ker M , respectively. Then × m zero matrix is denoted by
0n×m. We also denote byM⊤ and byM† the transpose and
the Moore-Penrose pseudoinverse ofM , respectively. Given
a subspaceY of R

m, the symbolM−1 Y stands for the
inverse image ofY with respect to the linear transformation
M . For the sake of brevity, we defineMD := diag(M,M),
and, accordingly, given a subspaceJ of R

n, the symbol
JD will identify the subspaceJ ⊕J of R2n. Finally, given
the vectorξ ∈ R

n, the symbolξ/J denotes the canonical
projection ofξ on the quotient spaceRn/J .

II. I NVARIANT SUBSPACES FOR

FORNASINI-MARCHESINI MODELS

We begin by recalling some preliminary geometric con-
cepts for the autonomous Fornasini-Marchesini (FM) model

xi+1,j+1 = A1 xi+1,j +A2 xi,j+1, (3)

where, for all integersi, j, the vectorxi,j ∈ R
n is the local

stateof the system. Here,A1, A2 ∈ R
n×n. Defining for each

k ∈ Z the separation set

Sk
def
= {(i, j) ∈ Z× Z | i+ j = k},

and the corresponding instance of theglobal state

Xk
def
= {xi,j ∈ R

n | (i, j) ∈ Sk},

it is easily seen from (3) thatXk can be uniquely expressed
in terms ofXk−1, [13]. In particular, if we fix the values of
xi,j on S0, i.e. fix X0 as a boundary condition, (3) uniquely
determinesXk for k > 0 (i.e., xi,j for i + j > 0).1 Indeed,
these are the boundary conditions usually associated with the
FM model (3). In the sequel, given a subspaceW ⊆ R

n, by
a W-valued boundary condition we intend the set{xi,j ∈
W | (i, j) ∈ S0}. Similarly, for eachk > 0, the global state
Xk is said to beW-valued whenxi,j ∈ W for all (i, j) ∈ Sk.
We also define the set of indexes for which the local state
xi,j of (3) is uniquely determined by fixingX0 as boundary
condition:

S+
def
=

⋃

k∈N

Sk = {(i, j) ∈ Z× Z | i+ j ≥ 0}.

A subspaceJ of R
n is said to be(A1, A2)-invariant if

J is Ai-invariant in the usual 1-D sense fori ∈ {1, 2};
i.e., Ai x ∈ J for all x ∈ J and i ∈ {1, 2}. The
notation Ai J ⊆ J is also commonly used to denote
this property. For example, the subspaces{0} and R

n are

1As shown in [14], other separation sets can be defined so that boundary
conditions specified over them uniquely determine a local-state trajectory
solution of (3) over a region ofZ×Z. An interesting and useful example is
the separation setSk

def
=

{

(i, j) ∈ {0}×[1,∞) ∪[1,∞)×{0}
}

, which with

corresponding boundary conditions uniquely determinesxi,j for (i, j) ∈

S+
def
= N × N \ {(0, 0)}. Most of the considerations in this paper can be

adapted to such separations sets.

(A1, A2)-invariant for everyn×n matricesA1 andA2. The
following lemma provides geometric and matrix conditions
for invariance.

Lemma 2.1:The following are equivalent:

1) J is (A1, A2)-invariant;
2) [A1 A2 ](J ⊕ J ) ⊆ J , i.e.,A1 x+ A2 y ∈ J for all

x, y ∈ J ;
3) There existL1, L2 ∈ R

(n−r)×(n−r) such thatQAi =
Li Q for i ∈ {1, 2}, i.e., Q [A1 A2 ] = [L1 L2 ]QD,
whereQ ∈ R

(n−r)×n is a full row-rank matrix such
that ker Q = J .

The proof of Lemma 2.1 follows straightforwardly from the
proof of Lemma 2.1 in [27]. The following theorem is the
2-D counterpart of a fundamental result onA-invariance (see
[1]), concerning the decomposition of a 1-D system matrix
with respect to an invariant subspace.

Theorem 2.1:Let J be anr-dimensional subspace ofRn.
The following statements are equivalent:

1) The subspaceJ is (A1, A2)-invariant;
2) With respect to any basis inRn whose firstr vectors

spanJ , the linear transformationsA1 andA2 are given
respectively by the block-triangular matrices
[

A11
1 A12

1

0(n−r)×r A22
1

]
and

[
A11

2 A12
2

0(n−r)×r A22
2

]
. (4)

The proof is a straightforward consequence of Lemma 2.1,
see also the proof of Theorem 2.1 in [27].

A. Invariant Subspaces and Local-State Trajectories

In this section the concept of(A1, A2)-invariance is used
to analyse properties of the local state trajectories generated
by (3). Consider an(A1, A2)-invariant subspaceJ . A bound-
ary condition{xi,j = bi,j ∈ J | (i, j) ∈ S0}, gives rise to
xi,j ∈ J for all (i, j) ∈ S+. In fact, in view of Theorem
2.1, a similarity transformationS ∈ R

n×n exists such that
for eachi ∈ {1, 2} there holds

Âi
def
= S Âi S

−1 =

[
Â11

i Â12
i

0(n−r)×r Â22
i

]
.

Matrix S is any basis matrix ofRn adapted toJ , i.e., such
that its first columns spanJ . Equivalently,S can be con-
structed as the square non-singular matrixS =

[
Sc

Q

]
, where

kerQ = J and the rows ofSc are linearly independent from
those ofQ. With respect to this new set of coordinates, model
(3) can be written as

[
x′
i+1,j+1

x′′
i+1,j+1

]
=

[
Â11

1 Â12
1

0 Â22
1

] [
x′
i+1,j

x′′
i+1,j

]

(5)

+

[
Â11

2 Â12
2

0 Â22
2

] [
x′
i,j+1

x′′
i,j+1

]
.

Any boundary condition{xi,j = bi,j ∈ J | (i, j) ∈ S0} is
such thatx′′

i,j = 0 for (i, j) ∈ S0. Therefore, by (5),x′′
i,j = 0

for all (i, j) ∈ S+, which implies thatxi,j ∈ J for all

i, j ∈ S+. In the basis corresponding toS, whereby
[
x′

i,j

x′′

i,j

]
=

S xi,j , the componentx′
i,j is the projection of the local state

xi,j onto the invariant subspaceJ , whilex′′
i,j is the canonical
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projection on to the quotient spaceRn/J . Thus,we refer to
x′
i,j of xi,j as theinternal (or inner) componentof the local

state (with respect toJ ), and tox′′
i,j of xi,j as theexternal

(or outer) componentof the local state (with respect toJ ).

B. Internal and External Stability of Invariant Subspaces

With ‖Xk‖
def
= supn∈Z ‖xk−n,n‖, the system model (3)

is said to be asymptotically stable if for any boundary
condition satisfying‖X0‖ < ∞, the corresponding sequence
{‖Xi‖}

∞
i=0 converges to zero [13]. This property is clearly

invariant under coordinate transformation and with a slight
abuse of nomenclature, the system matrix pair(A1, A2) is
called asymptotically stable in this case. It is well-known
that the pair(A1, A2) is asymptotically stable if, and only
if,

det(In −A1 z2 −A2 z1) 6= 0 ∀ (z1, z2) ∈ P (6)

where P = {(ζ1, ζ2) ∈ C × C
∣∣ |ζ1| ≤ 1 and |ζ2| ≤

1 } is the unit bidisc [13, Proposition 3]. Various, more
computationally tractable, sufficient stability conditions have
been proposed over the last two decades, in terms of Lya-
punov equations and/or spectral radius conditions of certain
matrices, see e.g. [19], [8]. In the very recent literature, new
necessary and sufficient criteria have appeared for asymptotic
stability in terms of conditions that have a more complex
structure, but that can be checked in finite time, see [34],
[12]. For the sake of argument and clarity, however, we
limit ourselves to recalling and using the following simple
sufficient condition for asymptotic stability, expressed in
terms of a linear matrix inequality (LMI):

Lemma 2.2:([19]) The pair (A1, A2) is asymptotically
stable if two symmetric positive definite matricesP1 and
P2 exist such that:

diag(P1, P2)−

[
A⊤

1

A⊤
2

]
(P1 + P2) [A1 A2 ] > 0. (7)

The LMI condition in Lemma 2.2 is used to develop a
procedure for the computation of output injection matrices
that stabilise the external dynamics of conditioned invariant
and input-containing subspaces, which are defined shortly.

The stability of (3) can be studied in terms of two parts,
with respect to a given(A1, A2)-invariant subspaceJ . In
particular, as shown in [27], (3) is asymptotically stable if
and only if the two matrix pairs(Â11

1 , Â11
2 ) and (Â22

1 , Â22
2 )

are each asymptotically stable. Moreover, when aJ -valued
boundary condition is imposed, for allk ≥ 0 the global
stateX ′′

k associated with the external dynamics (5) satisfies
‖X ′′

k ‖ = 0. Hence, the internal dynamics onJ satisfy

x′
i+1,j+1 = Â11

1 x′
i+1,j + Â11

2 x′
i,j+1. (8)

If (Â11
1 , Â11

2 ) alone is also asymptotically stable, then the
global stateX ′

k associated with (8) satisfies‖X ′
k‖ → 0, and

therefore also‖Xk‖ → 0.
Definition 2.1: Ther-dimensional(A1, A2)-invariant sub-

spaceJ is said to be

internally stable if the internal dynamics governed by (8) are
asymptotically stable; i.e., the corresponding pair(Â11

1 , Â11
2 )

is asymptotically stable;

externally stable if the external dynamics governed by
(5) are asymptotically stable; i.e., the corresponding pair
(Â22

1 , Â22
2 ) is asymptotically stable.

Consider now a boundary condition that is notJ -valued,
so that‖X ′′

0 ‖ 6= 0. It follows from (5) that‖X ′′
k ‖ → 0 if,

and only if, the pair(Â22
1 , Â22

2 ) is asymptotically stable, and
in this case, the elements of the global stateXk associated
with (3) approach the invariant subspaceJ , as k → ∞.
Finally, in view of the discussion above, note that the model
(3) is asymptotically stable if, and only if, any(A1, A2)-
invariant subspace is both internally and externally stable.
The following corollary will be important in the sequel.

Corollary 2.1: Given an r-dimensional subspaceJ of
R

n, let Q ∈ R
(n−r)×n be a full row-rank matrix such

that ker Q = J . ThenJ is an externally stable(A1, A2)-
invariant subspace if, and only if, an asymptotically stable
pair (L1, L2) exists such thatQAi = Li Q for i ∈ {1, 2}.
Proof: With respect to a basis ofRn adapted toJ , a
matrix whose columns spanJ is

[
Ir×r

0(n−r)×r

]
, and therefore

Q = [ 0(n−r)×r I(n−r) ] is a full row-rank matrix such
that ker Q = J . Writing the identitiesQAi = Li Q for
i ∈ {1, 2} with respect to this basis yields

[
0 I

]
[

A11
i A12

i

0 A22
i

]
= Li

[
0 I

]
,

leading toLi = A22
i for all i ∈ {1, 2}.

III. C ONDITIONED INVARIANT SUBSPACES

Consider the Fornasini-Marchesini model (1) where, for
all integersi, j, vectorxi,j ∈R

n is the local state,ui,j ∈R
m

is the control input,yi,j ∈R
p is the output,Ak ∈ R

n×n and
Bk ∈ R

n×m for k ∈ {1, 2}, C ∈ R
p×n andD ∈ R

p×m.
Definition 3.1: ([9]) The subspaceS ⊆ R

n is conditioned
invariant for (1) if

AH(SD ∩ ker CD) ⊆ S, (9)

whereAH

def
= [A1 A2 ], CD

def
= diag(C,C) andSD = S⊕S.

The set of conditioned invariant subspaces is closed under
subspace intersection but not under subspace addition. Its
smallest element is{0}, its largest element isRn. In the
following lemma, the most important properties of 2-D
conditioned invariance are given.

Lemma 3.1:Let S be ans-dimensional subspace ofRn,
and letQ ∈ R

(n−s)×n be a full row-rank matrix such that
ker Q = S. The following statements are equivalent:

1) the subspaceS is conditioned invariant for (1);
2) there exist matricesΓ = [Γ1 Γ2 ] andΛ = [Λ1 Λ2 ]

– with Γi ∈ R
(n−s)×(n−s) andΛi ∈ R

(n−s)×p for i ∈
{1, 2} – such that

QAH = ΓQD + ΛCD; (10)

3) there exist a matrixG = [G1 G2 ] – with Gi ∈ R
n×p

– such that

(AH +GCD)SD ⊆ S, (11)
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Proof: 1) =⇒ 2). Inclusion (9) can be written in matrix
notation asker

[
QD

CD

]
⊆ ker Q [A1 A2 ]. Hence, matrices

Γ ∈ R
(n−s)×2(n−s) and Λ ∈ R

(n−s)×2p exist such that
Q [A1 A2 ] = ΓQD + ΛCD.
2) =⇒ 3). Equation (11) follows from (10) with anyG
such thatΛ = −QG. Such a matrixG always exists asQ
is of full row-rank.
3) =⇒ 1). This follows from the definition.

Remark 3.1:Noticethat property2) in Lemma 3.1 can be
written equivalently as

QAi = Γi Q+ Λi C for i ∈ {1, 2}.

As a consequence, inclusion (9) in Definition 3.1 can also
be written asAi (S ∩ ker C) ⊆ S for i ∈ {1, 2}, which
coincides with the definition of 2-D conditioned invariance
given in [9]. Moreover,3) in Lemma 3.1 is equivalent to

(Ai +Gi C)S ⊆ S for i ∈ {1, 2}.

This means thatS is conditioned invariant for (1) if and only
if there exists an output-injection matrixG = [G1 G2 ] ∈
R

n×2p such thatS is an (A1 +G1 C,A2 +G2 C)-invariant
subspace.

A. Construction of Stabilising Output-Injection Matrices

Our aim now is to establish a procedure that enables an
output-injection matrixG to be determined such thatS is an
externally stable(A1+G1 C,A2+G2 C)-invariant subspace.
As for the 1-D case, we say thatS is externally stabilisable
if we can find an output-injection matrixG such thatS is an
externally stable(A1+G1 C,A2+G2 C)-invariant subspace.

To find all the output-injection matrices associated with
the conditioned invariant subspaceS, let Γ andΛ be such
that (10) holds, which can be written as the linear equation

QAH =
[
Γ Λ

] [ QD

CD

]
. (12)

This equation can be solved forΓ andΛ. The solutions of
(12) are given by

[
Γ Λ

]
= QAH

[
QD

CD

]†
+KH, (13)

where H has linearly independent rows and
ker H = im

[
QD

CD

]
, while K is an arbitrary matrix of

suitable size. As it will become clear in the sequel,K
represents a first degree of freedom in the construction
of the output-injection matrix, that can be exploited to
externally stabilise the 2-D conditioned invariant subspace
S. Notice that in the case when

[
QD

CD

]
is full-rank, the only

solution of (12) is[ Γ Λ ] = QAH

[
QD

CD

]†
, and this degree

of freedom disappears.

By (11), Γ̃ = [ Γ̃1 Γ̃2 ] exists such that

Q (AH +GCD) = Γ̃QD, (14)

or, equivalently, such thatQ (Ai + Gi C) = Γ̃i Q, for
i ∈ {1, 2}. We now investigate the relation between the

pairs(Γ,Λ) and(G, Γ̃) satisfying (12) and (14), respectively.
Given a pair(G, Γ̃) such that (14) holds, then (12) is satisfied
with Γ = Γ̃ and Λ = −QG. Conversely, given a pair of
matrices(Γ,Λ) such that (12) holds, then (14) is satisfied
with Γ̃ = Γ and with anyG such thatΛ = −QG. As such,
no generality is lost by assuming̃Γ = Γ, and by representing
the set of all output-injection matrices associated with the
conditioned invariant subspaceS as the set of matrices
G ∈ R

n×2p satisfyingΛ = −QG, whereΛ ∈ R
(n−s)×2p is

any matrix for whichΓ ∈ R
(n−s)×2(n−s) exists so that (12)

holds. For any pair(Γ,Λ) such that (12) holds, the solutions
of the linear equationΛ = −QG are parameterised as

G = GΛ +ΩU, (15)

whereGΛ
def
= −Q⊤(QQ⊤)−1 Λ, matrixΩ is a basis ofker Q

and U is an arbitrary matrix of suitable size. Hence,U
represents a second degree of freedom in the construction
of the output-injection matrix associated withS, that can
be exploited to stabiliseS internally. This second degree of
freedom only disappears forS = {0}; in fact, in this case
Q ∈ R

n×n leads toU = 0. With reference to the discussion
in Section II, note that withS =

[
Sc

Q

]
, where the rows of

Sc are linearly independent from those ofQ, we have that
for all i ∈ {1, 2}

S (Ai +Gi C)S−1 =

[
∆11

i (K,U) ∆12
i (K,U)

0 ∆22
i (K,U)

]
. (16)

Equation (16) expresses the fact that, as repeatedly men-
tioned,S is an(A1 +G1 C,A2 +G2 C)-invariant subspace.
The dependence of matrices∆11

i , ∆12
i and∆22

i uponU and
K expresses the fact thatU and K are the two degrees
of freedom that can be used to assign theinner dynamics
of S by modifying ∆11

i (K,U) and to assign theexternal
dynamicsof S by modifying∆22

i (K,U). Importantly, these
two procedures can be carried out independently; in fact,
as the following lemma explains, the choice ofK affects
∆22

i (K,U) but not∆11
i (K,U), i ∈ {1, 2}. Vice-versa, the

choice of U affects ∆11
i (K,U) but not ∆22

i (K,U), i ∈
{1, 2}.

Lemma 3.2:For all i ∈ {1, 2}, the matrix∆22
i (K,U) in

(16) does not depend onU , and the matrix∆11
i (K,U) does

not depend onK.
The proof follows the same lines of the proof of Lemma 3.3
in [27]. Now we want to find a method to design the output-
injection matrixG = [G1 G2 ] such thatS is an externally
stable(A1+G1 C, A2+G2 C)-invariant subspace; i.e., such
that there exists an asymptotically stable pair(Γ1,Γ2) for
which Q (AH +GCD) = ΓQD.

For a given a conditioned invariantS, write (13) as
[
Γ1 Γ2 Λ

]
=

[
V1 V2 V̄

]
+K

[
H1 H2 H̄

]
, (17)

where [V1 V2 V̄ ] = QAH

[
QD

CD

]†
and [H1 H2 H̄ ] =

H are partitioned comformably with[ Γ1 Γ2 Λ ], i.e.,
Γi = Vi + KHi for i = 1, 2 and Λ = V̄ + K H̄. If
SD + ker CD = R

2n, there is only one solution to (12),
so that there are no degrees of freedom in the choice of
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the pair(Γ1,Γ2). In this case, if(Γ1,Γ2) is asymptotically
stable, then with the correspondingΛ = V̄ , the matrix
GΛ

def
= −Q⊤(QQ⊤)−1 Λ = [GΛ,1 GΛ,2 ] is such that

S is an externally stable(A1 + GΛ,1 C,A2 + GΛ,2 C)-
invariant subspace. On the other hand, if the pair(Γ1,Γ2) is
not asymptotically stable, the subspaceS is not externally
stabilisable.

Now, whenSD + ker CD ⊂ R
2n, the problem we need

to solve is to find a matrixK such that the resulting pair
(Γ1,Γ2) = (V1+KH1, V2+KH2) is asymptotically stable;
the correspondingΛ = V̄ + K H̄, for which (Γ,Λ) is
a solution of (10), is such thatGΛ

def
= −Q⊤(QQ⊤)−1 Λ,

yieldingQ (AH +GΛCD) = ΓQD, so thatS is an externally
stable(A1 +GΛ,1 C,A2 +GΛ,2 C)-invariant subspace.

Towards characterising a subset of such matricesK, we
can virtually expolit any stability criterion for 2-D Fornasini-
Marchesini models. As mentioned, necessary and sufficient
conditions have recently appeared in the literature that char-
acterise stability in finite terms, [12], [34]. For the sake
of simplicity, however, we consider the sufficient condition
recalled in Lemma 2.2, whose structure appears to be much
less involved. Let us rewrite this condition for asymptotic
stability in Lemma 2.2 for the pair(Γ1,Γ2) as

[
Φ 0
0 Ψ− Φ

]
−

[
Γ⊤
1

Γ⊤
2

]
Ψ
[
Γ1 Γ2

]
> 0,

for someΦ
def
= P1 > 0 and Ψ

def
= P1 + P2 > 0. Standard

manipulation andΓi = Vi + KHi, for i = 1, 2, yield the
equivalent condition



Φ 0 (ΨV1 +ΘH1)
⊤

0 Ψ− Φ (ΨV2 +ΘH2)
⊤

ΨV1 +ΘH1 ΨV2 +ΘH2 Ψ


 > 0 (18)

for someΦ > 0, Ψ > 0, and Θ of suitable dimensions,
whereΘ = ΨK. We have just proved the following result

Theorem 3.1:Let S be a conditioned invariant subspace
for (1). Then, S is an externally stabilisable conditioned
invariant subspace if there existΦ = Φ⊤ > 0, Ψ = Ψ⊤ > 0
andΘ of suitable dimensions such that (18) holds. Moreover,
given a triple(Θ,Φ,Ψ) in the convex set defined by (18), a
matrixK for which the pair(Γ1,Γ2) is asymptotically stable
is given byK = Ψ−1 Θ.

IV. D ETECTABILITY SUBSPACES ANDLOCAL STATE

OBSERVERS

Now we turn our attention to input-containing subspaces,
which are particular types of conditioned-invariant sub-
spaces. These are useful for various filtering/estimation prob-
lems, including the construction of local state observers
without access to the system inputs.

Definition 4.1: We define aninput-containing subspaceS
for (1) as a subspace ofRn such that
[
AH BH

] (
(SD ⊕ R

2m) ∩ ker
[
CD DD

] )
⊆ S.

As for the 1-D case, it is easy to see that the intersection
of two input-containing subspaces is input-containing. It
follows that the set of input-containing subspaces for (1) is

closed under subspace intersection. The same is not true for
subspace addition. This is due to the fact that the Grassman
manifold of Rn is a non-distributive lattice with respect to
the operations of sum and intersection (and with respect to
the partial ordering given by the standard subspace inclusion
⊆), [3]. As a result of these considerations, it turns out that
the set of input-containing subspaces for (1) is a modular
lower semilattice with respect to subspace intersection. Thus,
the intersection of all input-containing subspaces ofΣ is
the smallest input-containing subspace ofΣ, and is usually
denoted byS⋆. A simple algorithm for the computation of
S⋆ is given below. This algorithm extends Proposition 3.4 in
[9] to non-strictly proper systems.

Algorithm 4.1: The sequence of subspaces(Si)i∈N de-
scribed by the recurrence

S0 = 0n

Si =
[
AH BH

] (
(Si−1

D
⊕ R

3m) ∩ ker
[
CD DD

] )
,

for i > 0, is monotonically non-increasing. An integer
k≤n− 1 exists such thatSk+1 =Sk. For such k, the
identity S⋆ =Sk holds.

For input-containing subspaces, a generalised version of
Lemma 3.1 holds.

Lemma 4.1:Given thes-dimensional subspaceS of Rn,
let Q ∈ R

(n−s)×n be a full row-rank matrix such that
ker Q = S. The following statements are equivalent:

1) the subspaceS is input-containing for (1);
2) two matricesΓ ∈ R

(n−s)×2 (n−s) andΛ ∈ R
(n−s)×2p

exist such that

Q
[
AH BH

]
=Γ

[
QD 0

]
+Λ

[
CD DD

]
; (19)

3) a matrixG ∈ R
n×2p exists such that

[
AH +GCD BH +GDD

] (
SD ⊕ R

2m
)
⊆ S (20)

Proof: The result follows in the same way as the result in
Lemma 3.1.

Following the procedure outlined for 2-D conditioned in-
variantsubspaces, to find the set of ouput-injection matrices
associated with the input-containing subspaceS, we first
solve (19) with respect toΓ andΛ, obtaining

[
Γ Λ

]
= Q

[
AH BH

] [ QD 0
CD DD

]†
+KH,

whereH is full row-rank,ker H = im
[
QD 0
CD DD

]
, andK is

an arbitrary matrix of suitable size. Using (20), we compute
the solutions ofΛ = −QG as G = GΛ + ΩU . As for
conditioned invariant subspaces,K represents the degree of
freedom that can be used to assign the external dynamics of
the input-containing subspaceS, e.g. by means of an LMI
condition similar to that given in Theorem 3.1. As such, we
say thatS is a detectability subspace if an output-injection
matrix G exists (or, equivalently, ifK exists) such that (20)
holds andS is an externally stable(A1+G1 C, A2+G2 C)-
invariant subspace. It can be straightforwardly established
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that an exact equivalent of Theorem 3.1 holds for detectabil-
ity subspaces by simply writing (17) with

[
V1 V2 V̄

]
= Q

[
AH BH

] [ QD 0
CD DD

]†
(21)

and ker [H1 H2 H̄ ] = im
[
QD 0

CD DD

]
. Detectability

input-containing subspaces can be linked to the existence of
certain observers [28]. Consider a systemΣ governed by a
Fornasini-Marchesini model (1). Given a subspaceS of Rn,
the 2-D systemΣO ruled by (2) is said to be anS-quotient
observer if for any boundary condition ofΣ and ΣO, the
local state ofΣO asymptotically reconstructs the local state
xi,j of Σ modulo the components of this vector onS. In
other words, on the basis of the observationsy, the vector
ωi,j asymptotically converges toxi,j/S, as the indexesi and
j evolve away from the boundary, regardless of the boundary
conditions ofΣ andΣO.

Obviously, given an arbitrary subspaceS of R
n, an S-

quotient observer does not necessarily exists. But if this
subspace is a detectability subspace, the existence of such an
observer is guaranteed. LetQ be a full row-rank matrix such
thatker Q = S. Define the new variableei,j = Qxi,j−ωi,j ,
along with the vectorŝx(i, j) = [x⊤

i,j x⊤
i+1,j x⊤

i,j+1 ]
⊤,

û(i, j) = [u⊤
i,j u⊤

i+1,j u⊤
i,j+1 ]

⊤ and ω̂(i, j) =
[ω⊤

i,j ω⊤
i+1,j ω⊤

i,j+1 ]
⊤, (i, j) ∈ S+. Let Γ andΛ be such

that (19) holds. Let system (2) be defined byKH = Γ and
LH = Λ. It is found that

ei+1,j+1 = Qxi+1,j+1 − ωi+1,j+1

= QAH x̂(i, j) +QBH û(i, j)− Γ ω̂(i, j)

−QGCD x̂(i, j)−QGDD û(i, j)

= Q
[
AH+GCD BH+GDD

][ x̂(i, j)
û(i, j)

]
−Γω̂(i, j)

= Γ1 ei+1,j + Γ2 ei,j+1,

where (20) has been used. Moreover, sinceS is a detectabil-
ity subspace, the pair(Γ1,Γ2) is asymptotically stable.
Therefore, the estimation error converges to zero as the index
(i, j) evolves away fromS0, so that ωi,j asymptotically
converges toQxi,j . Sinceker Q = S, this means thatΣO

recovers the external components ofxi,j with respect toS.
Note that the characterisation of external stabilisability

for conditioned invariant and input-containing subspaces is
essential in employing these ideas in the construction of
local state observers. Indeed, the fact that the subspaceS
is input-containing alone can only guarantee thatΣO gives
rise to an estimation error that only depends on the boundary
conditions. Therefore,ΣO can only guarantee that when
ωi,j = Qxi,j for (i, j) ∈ S0, then the estimation error is
identically zero, which means thatωi,j = Qxi,j for all S+.

V. UNKNOWN-INPUT OBSERVERS

In this section, we use the geometric notions developed so
far for the solution of the unknown-input observation prob-
lem, which plays an important role in signal reconstruction

problems, fault-detection and identification, non-interaction
control. Consider the Fornasini-Marchesini model

xi+1,j+1 = A1 xi+1,j +A2 xi,j+1

+B1 ui+1,j +B2 ui,j+1

yi,j = C xi,j +Dui,j

zi,j = Rxi,j + S ui,j

(22)

where, for all intgersi, j, vector ui,j ∈R
m represents an

input which is not accessible for measurement. The variable
yi,j ∈R

p1 represents an output that can be measured and
the variable zi,j ∈ R

p2 is an output that we want to
estimate on the basis of the measurementy. All matrices
appearing in (22) are of appropriate dimensions. Consider
the block diagram depicted in Figure 1. Let the observerΣO

be described by the equations

ωi+1,j+1 = K1 ωi+1,j +K2 ωi,j+1

+L1 yi+1,j + L2 yi,j+1,

ζi,j = M ωi,j +N yi,j

(23)

and let §̂ denote the overall system from the inputu to the
output e := z − ζ. With the choice of the structure of the
observerΣO, the overall system is governed by
[
xi+1,j+1

ωi+1,j+1

]
=

[
A1 0
L1 C K1

][
xi+1,j

ωi+1,j

]
+

[
A2 0
L2 C K2

][
xi,j+1

ωi,j+1

]

+

[
B1

L1 D

]
ui+1,j+

[
B2

L2 D

]
ui,j+1,

ei,j =
[
R−N C −M

][xi,j

ωi,j

]
+(S−N D)ui,j .







 








Σ

ΣO

u

y

z

e

ζ

+

−

Fig. 1. Block diagram of the unknown input observation scheme.

Roughly speaking, theunknown-input observationprob-
lem consists of findingΣO ruled by (23) and connected as
in Figure 1, such thatΣO recovers the local statexi,j with
greater accuracy as the spatial index(i, j) evolves away
from S0, i.e., such that for any boundary conditions ofΣ
andΣO the estimation errorei,j converges to zero as(i, j)
evolves away fromS0. This problem is equivalent to finding
an observerΣO such that the inputu has no influence on
the outpute. The case in which the observer is dead-beat,
i.e., in which the estimation error goes to zero within a finite
number of steps for any boundary conditions ofΣ andΣO,
was completely solved in [5] using polynomial techniques.
In the following theorem, a solution is provided for the
unknown-input observation problem when only asymptotic
convergence to zero of the estimation error is required. The
solution is constructive, in the sense that a sufficient solv-
ability condition is presented that guarantees the existence
of an unknown-input observer that provides an asymptotic
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estimate ofz. The observer model matrices are explicitly
derived.

Theorem 5.1:Let S⋆ be the smallest input-containing
subspace of the Fornasini-Marchesini model (1). The
unknown-input observation problem admits solutions if

1) ker [R S ] ⊇ (S⋆ ⊕ R
m) ∩ ker[C D ];

2) S⋆ is a detectability subspace.
Proof: Let Q be a full row-rank matrix such thatker Q =
S⋆. Condition(i) implies that a pair(Φ,Ψ) exists such that

[
R S

]
= Φ

[
Q 0

]
+Ψ

[
C D

]
. (24)

The solutionsΦ andΨ of (24) are parameterised as

[
Φ Ψ

]
=

[
R S

] [ Q 0
C D

]†
+KH,

where the rows ofH span the null-space of
[
Q⊤ C⊤

0 D⊤

]
and

K is an arbitrary matrix of suitable size. Furthermore, the
matricesΦ andΨ satisfying (24) are unique if and only if
the map

[
Q 0

C D

]
is epimorphic. When[ C D ] is full row-

rank, this condition is equivalent toC S⋆ + imD = R
p1

or alternativelyS⋆ + C−1 imD = R
n.2 Notice also that

equation (24) can be equivalently written as

[
RD SD

]
= ΦD

[
QD 0

]
+ΨD

[
CD DD

]
. (25)

Now, since obviously the kernel of
[
Q⊤ C⊤

0 D⊤

]
is zero if and

only if such is the kernel of
[
Q⊤

D C⊤

D

0 S⊤

D

]
, it turns out that in

the case whereC S⋆ + imD = R
p1 , equation

Q
[
AH BH

]
=Γ

[
QD 0

]
+Λ

[
CD DD

]

admits a unique solution, so that the four matricesΓ,Λ,Φ
andΨ can be uniquely determined. SinceS⋆ is a detectability
subspace, there exists an output-injection matrixG such that
(20) holds with an asymptotically stable pair(Γ1,Γ2). We
show that the dynamical systemΣO ruled by (23) withKk =
Γk, Lk = −QGk, (k ∈ {1, 2}), M = Φ, andN = Ψ solves
the unknown-input observation problem. First, note that in
view of (24)

ei,j =
[
R−N C −M

] [ xi,j

ωi,j

]
+ (S −N D)ui,j

= (R−ΨC)xi,j − Φωi,j + (S −ΨD)ui,j

=
([

R S
]
−Ψ

[
C D

]) [ xi,j

ui,j

]
− Φωi,j

= Φ
[
Q 0

] [ xi,j

ui,j

]
− Φωi,j = Φ(Qxi,j − ωi,j).

Define εi,j := Qxi,j − ωi,j using the same notation of
Section IV. Given the signals : S+ 7→ R

h for someh,

2Recall thatC−1 imD = {x ∈ Rn |C x ∈ imD}.

let alsoŝ(i, j)
def
= [ s⊤i,j s⊤i+1,j s⊤i,j+1 ]

⊤. It follows that

εi+1,j+1 = Qxi+1,j+1 − ωi+1,j+1

= Q
[
AH BH

] [ x̂(i, j)
û(i, j)

]
− Γ ω̂(i, j)

+QG1 (C xi+1,j +Dui+1,j)

+QG2 (C xi,j+1 +Dui,j+1)

= Q
([

AH BH

]
+G

[
CD DD

]) [ x̂(i, j)
û(i, j)

]

−Γω̂(i, j)

= Γ
[
Q 0

] [ x̂(i, j)
û(i, j)

]
− Γω̂(i, j)

= Γ1 εi+1,j + Γ2 εi,j+1.

Hence, the signalεi,j is independent ofui,j , and sinceei,j =
Φ εi,j , such is also the estimation errorei,j . It follows that
if ζi,j = zi,j for all (i, j) ∈ S0, then ζi,j = zi,j for all
(i, j) ∈ S+. Moreover, in view of the asymptotic stability
of the pair (Γ1,Γ2), it also follows that for all boundary
conditionsζi,j andxi,j , (i, j) ∈ S0, the estimation errorei,j
converges to zero as(i, j) moves away fromS0.

VI. CONCLUDING REMARKS

The paper develops notions of conditioned invariant and
detectability subspaces for 2-D Fornasini-Marchesini models.
By contrast with earlier work, the development here leads
to an LMI based procedure for the synthesis of observers
which asymptotically estimate the local state of a standard
Fornasini-Marchesini model, in the sense that the error tends
to zero as the reconstructed local state evolves away from
unknown boundary conditions. The geometric notions and
results presented here complement those in [27], where
notions of controlled-invariance and stabilisability are de-
veloped within the context of 2-D disturbance decoupling
problems. It is expect that the results of this paper will
lead to 2-D extensions of techniques for the detection and
identification of faults, as developed in [25] and [31].
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