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Abstract— In this paper we discuss the problem of computing
the real radius of controllability of the Single Input Multi
Output (SIMO) systems described by univariate polynomial
matrices. The problem is equivalent to computing the near-
est noncoprime polynomial matrix to the polynomial matrix
describing the system in some prescribed norm. A particular
case of this problem is to compute approximate GCD of
univariate polynomials. Further this problem is shown to be
equivalent to the Structured Low Rank Approximation (SLRA)
of a linearly structured resultant matrix associated with the
given polynomial matrix. The radius of controllability is then
computed by finding the nearest SLRA of this resultant matrix.

Index Terms— real radius of controllability, univariate poly-
nomial matrices, Singular Value Decomposition (SVD), Struc-
tured Low Rank Approximation (SLRA)

I. INTRODUCTION
Controllability is a central idea in systems theory. How-

ever it is not always enough to know whether the system
is controllable. A small perturbation in system parameters
may render the system uncontrollable. Thus checking for
controllability is not a numerically stable problem. In order
to overcome this difficulty a continuous metric instead of
yes/no kind of controllability check was introduced in [1],
[2], [3] for the systems represented in state space form. An
algorithm to compute the distance between the given system
in state space representation and the nearest uncontrollable
system was discussed in [4], [5]. Recently an algorithm to
compute the nearest uncontrollable system to the given SISO
system represented using polynomial matrix was discussed
in [6]. However this problem is equivalent to the problem of
computing approximate GCD of two univariate polynomials.
Real radius of controllability for the systems modeled as state
space systems was introduced in [7]. This radius quantifies
the maximum perturbation so that the perturbed system is
still controllable. Consider a system represented in the state
space form as in the following equation.

ẋ = Ax+bu

y = cx

where A∈Rg×g, b∈Rg×1 and c∈R1×g. Then the real radius
of controllability, denoted as rc, is defined as

rc = min
∆A,∆b

{‖ [∆A ∆b]‖F | the pair (A+∆A,b+∆b)

is uncontrollable} . (1)
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The word real in the definition of real radius of con-
trollability indicates the perturbations that are allowed in
the system matrices are real matrices. When the complex
perturbations are allowed, the term is defined as complex
radius of controllability.

In this paper we compute the real radius of controllability
for SIMO systems described by univariate polynomial matri-
ces. We show that this problem is equivalent to computing the
nearest noncoprime polynomial matrix. Further we construct
a sequence of structured resultant matrices and show that the
nearest noncoprime matrix can be obtained by computing the
nearest Structured Low Rank Approximation (SLRA) of a
certain resultant matrix from this sequence.

The paper is organized as follows. The remainder of this
section is devoted to preliminaries. In Section II we formulate
the problem formally. In Section III we prove the main
results including the equivalence of the problem with the
SLRA of linearly structured resultant matrix associated with
the polynomial matrix. Further in Section IV we formally
define the SLRA problem and discuss a numerical algorithm
to compute the nearest SLRA to a given matrix. In Section
V we show some numerical results and comparisons with
existing results in the literature for the SISO case. Finally
we conclude in Section VI.

A. Preliminaries: Polynomial Matrices

Let R[s] denote the ring of polynomials in a single variable
s with coefficients from the real field. Let R(s) ∈ Rg×w[s]
be a polynomial matrix of size g×w with entries from the
ring of polynomials R[s]. Another useful way to represent
a polynomial matrix is in the matrix polynomial form as
follows:

R(s) = R0 +R1s+R2s2 + · · ·+Rnsn (2)

where Ri ∈ Rg×w. Further n is called the degree of the
polynomial matrix. The matrix polynomial representation of
a polynomial matrix plays a key role in the discussion that
follows. The nullspace of R(s), denoted as N , is defined as

N = {v ∈ Rw×1[s] | R(s)v = 0}.

We now define minimal polynomial basis for N .
Definition 1.1: Let B = {m1(s),m2(s), . . . ,mk(s)} ⊂ Rw[s]

be a generating set for N with degrees δ1 ≤ δ2 ≤ ·· · ≤ δk.
This generating set is called minimal basis (see [8]) if for
any other basis of N with degrees γ1 ≤ γ2 ≤ ·· · ≤ γk, it turns
out that δi ≤ γi for i = 1,2, . . . ,k.

The degree of the nullspace N is defined as the
max(δ1, . . . ,δk) where δi’s are degrees of basis vectors in
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a minimal nullspace basis. A set of vectors {v1,v2, . . . ,vn} ⊂
Rw×1[s] is called polynomially independent set if a1(s)v1 +
a2(s)v2 + · · ·+ an(s)vn = 0 implies that ai(s) = 0 for all
i = 1,2, . . . ,n identically. If a set of polynomial vectors is
not polynomially independent, then it is called polynomially
dependent. Rank or normal rank of a polynomial matrix is
defined as the number maxλ∈R rank R(λ ). It can be shown
that this number is same as the number of polynomially
independent rows in R(s). A square polynomial matrix is
called unimodular if its determinant is a nonzero real number.
Thus inverse of a unimodular matrix is also a polynomial
matrix. A polynomial matrix R(s) is called left coprime if it
has full row rank everywhere in the complex plane, that is
R(z) as a matrix of complex numbers is full row rank for all
z ∈ C. Similarly we can define when R(s) is right coprime.
Note that in case of g= 1, the polynomial matrix R(s) being
left coprime is equivalent to the definition of coprimeness of
a set of w univariate polynomials.

B. Preliminaries: Systems Theory

Use of polynomial matrices to represent systems can be
found in [9], [10]. We define some basic notions about
systems represented using polynomial matrices. A behavior
B is said to be a linear differential behavior if it is governed
by a system of linear differential equations. B is said to have
a kernel representation if

B = {w ∈ C∞(R,Rw) | R( d
dt )w = 0} (3)

where R(s) ∈ Rg×w[s]. A kernel representation (3) is said to
be minimal if R(s) is full row rank. Here rank is normal
rank of a polynomial matrix, that is all g rows of R(s) are
polynomially independent. A behavior is said to be control-
lable if we can patch any two trajectories in the behavior
in finite time. An algebraic test to check controllability is
to check rank of matrix R(λ ), ∀ λ ∈ C. The behavior is
controllable iff this rank is constant for all λ ∈C. Thus when
a behavior is represented in a minimal kernel representation,
controllability is equivalent to the the polynomial matrix R(s)
being left coprime. A behavior is said to have an image
representation if one can write the behavior as

B = {w ∈ C∞(R,Rw) | w = M( d
dt )` where ` ∈ C∞(R,Rl)}

(4)
where M(s) ∈ Rw×l[s]. An important characterization of
controllability of a behavior is the existence of an image
representation. Further M(s) in the image representation (4)
is such that R(s)M(s) = 0. Another important notion in
behavioral theory is of McMillan degree which we define
now.

Definition 1.2: Let B be represented by a minimal kernel
representation as in equation (3). Consider all

(
w
g

)
determi-

nants of order g×g of R(s). The highest degree among all
the degrees of these determinants is called McMillan degree
of B.

Note that the McMillan degree of a behavior is an invari-
ant. In a similar manner we can define the McMillan degree
of an image representation. The McMillan degree of a the

kernel representation of a controllable behavior is equal to
the McMillan degree of the observable image representation
of the behavior.

An input/output partition of w can be done as follows: let
B be represented in a minimal kernel representation with
R(s) ∈ Rg×w[s] as in equation (3). Then we chose the g×g
minor R1 such that the degree of the determinant polynomial
of R1 is equal to the McMillan degree of B. WLOG we
assume that this minor R1 is such that we can partition R as
R = [R1 R2] where R2 ∈Rg×(w−g)[s]. Then for w = [w1 w2]T

where w1 and w2 are compatible with R1 and R2, we write

R1w1 +R2w2 = 0.

⇒ w1 = R−1
1 R2w2.

Thus variables w1 can be thought of as outputs and variables
w2 as inputs. For the case when w = g+ 1, we get SIMO
systems. In this paper we consider the case when w= g+1.

II. PROBLEM FORMULATION

In this section we define the problem formally. Let B be
a controllable behavior represented in minimal kernel repre-
sentation as in equation (3). Then the system is controllable
if and only if the polynomial matrix R(s) is left coprime.
Thus if we find the nearest noncoprime matrix to R(s) in
some norm, then the behavior corresponding to this matrix
is uncontrollable. We start by defining the norm on the space
Rg×(g+1)[s]. Let R(s)∈Rg×(g+1)[s]. In order to define a norm
‖·‖∗ on Rg×w[s], we use the matrix polynomial representation
as introduced in equation (2). Let n be the degree of R(s).

Construct the matrix XR ∈ R(n+1)g×w as XR =


R0
R1
...

Rn

. The

norm ‖ · ‖∗ is defined as ‖R(s)‖∗ = ‖XR‖F , where ‖ · ‖F is
the Frobenius norm on R(n+1)g×w. It is easy to verify that
‖ · ‖∗ satisfies all the conditions of the norm function.

In order to compute the nearest noncoprime polynomial
matrix to the given polynomial matrix R(s), we need to
perturb the polynomial matrix R(s) to R(s)+ ∆R(s) so that
the perturbed matrix is not left coprime. The perturbation
in the sense of norm defined above should be optimal. In
this paper we restrict the class of perturbations as to the
polynomial matrices in the set Rg×(g+1)[s] with the degree
less than or equal to that of R(s).

Problem Statement 2.1: Let P ⊂ Rg×(g+1)[s] be the set
of all polynomial matrices which are not left coprime.
Let R(s) ∈ Rg×(g+1)[s] with degree n be a minimal kernel
representation of B as in equation (3). Then we want to
compute Q(s) ∈P with degree at most n such that

rc = min
Q∈P
‖R(s)−Q(s)‖∗ (5)

where rc is called the real radius of controllability. Here the
system corresponding to Q(s) is uncontrollable as Q(s) is
not left coprime.

The Frobenius norm used in the definition of ‖ · ‖∗ mea-
sures the total perturbations in the coefficient matrices, that
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would make the system uncontrollable or equivalently, make
the polynomial matrix noncoprime. We propose an algo-
rithm to compute the radius of controllability. The approach
towards the solution involves constructing certain special
structured matrices. Further left coprimeness is shown to
be equivalent to the full column rank condition of these
structured matrices. Thus the problem of computing the ra-
dius of controllability is equivalent to computing when these
structured matrices would lose full column rank property.

Remark 2.2: The special case of g = 1 is equivalent to
finding the smallest perturbations of coefficients of two
coprime polynomials that would render them noncoprime.
The problem is then equivalent to a well studied problem
of finding approximate GCD of two polynomials (See [11]).
Thus our solution also gives a way of finding approximate
GCD of polynomials.

Remark 2.3: The matrix R(s)∈Rg×(g+1)[s] is left coprime
if and only if all the g+1 determinant polynomials of g×g
minors are coprime. Thus for a given polynomial matrix
when we compute the nearest noncoprime polynomial ma-
trix, the g+1 determinant polynomials become noncoprime.
However note that the problem of computing the approximate
GCD of g+1 polynomials is a more difficult problem than
the problem discussed in this paper.

III. MAIN RESULTS

In this section we prove the main results of this paper.
We now construct a sequence of structured matrices from
the given polynomial matrix R(s) ∈ Rg×(g+1)[s] with degree
n and discuss the relation of the nullspace N with the
nullspaces of these structured matrices.

Let X0 =


R0
R1
...

Rn

 ∈ R(n+1)g×(g+1). We now construct the

sequence of structured matrices X1,X2, . . . as follows:

X1 =

 X0 0

0 X0

 , X2 =


X0 0 0

0 X1
0

 , . . . (6)

where 0’s in the above equation are zero matrices of size
g× (g+ 1). For any i ∈ N, Xi ∈ R(i+n+1)g×(i+1)(g+1). Let
Ki be the nullspace of matrix Xi and let di = dim(Ki).
The nullspace N of the polynomial matrix is related to the
nullspaces Ki of structured matrices in the following way:
for any i∈N∪{0}, let y∈Ki. Then partition y∈R(i+1)(g+1)

as y =


y0
y1
...
yi

 where y j ∈R(g+1) for j = 0,1, . . . , i. Let y(s) =

∑
i
j=0 y js j ∈ R(g+1)×1[s]. It is easy to verify that y(s) ∈N .

Note that at the ith stage of this sequence, if Ki 6= {0},
then we get the an element of N of degree i. We prove
some important properties of the sequence {di}i=0,1,... in the
following theorem.

Theorem 3.1: Let R(s)∈Rg×(g+1)[s] be a polynomial ma-
trix of degree n and rank g. Let {Xi}i=0,1,... be the sequence of
structured matrices constructed from R(s) as in the equation
(6). Let Ki = ker(Xi) and di = dim(Ki). Then the following
statements hold:

(a) The sequence {di}i=0,1,2,... is a nondecreasing sequence
of nonnegative integers.

(b) There exists n0 ∈N such that dk+1 = dk +1 for all k≥ n0.
Proof: (a) Let n0 ∈ N be the smallest positive integer

such that dn0 > 0. Let y ∈R(n0+1)(g+1) be such that y ∈Kn0 .
Then from the structure of matrices Xi it is clear that for

0∈Rg+1,
[

y
0

]
,

[
0
y

]
∈Kn0+1. Thus dn0+1≥ 2dn0 . In particular

dn0+1 > dn0 . Let dn0+1 = 2dn0 + α1. Then using similar
argument we can show that dn0+2 = 3dn0 + 2α1 + α2 =
dn0+1 + dn0 + α1 + α2 > dn0+1. Generalizing this argument
we can show that

dn0+ j = ( j +1)dn0 +
j

∑
k=1

( j− k +1)αk

= dn0+ j +

(
dn0 +

j

∑
k=1

αk

)
> dn0+ j

for j = 0,1,2, . . .. The first n0−1 terms of the sequence are
0. This proves that {di}i=0,1,2,... is a nondecreasing sequence
of nonnegative integers.
(b) It is clear that once we find a polynomial vector y(s)∈N
such that deg y(s) is same as the degree of N , all polynomial
vectors in N can be obtained from linear span of polynomial
vectors y(s),sy(s),s2y(s), . . .. Further every vector in Ki
corresponds to a polynomial vector in N with a degree less
than or equal to i. This proves that α j = 0 for j = 1,2 in part
(a). Then it follows that dk+1 = dk +1 for k ≥ n0.

Corollary 3.2: Let R(s) ∈ Rg×(g+1)[s] be a given polyno-
mial matrix with degree n and normal rank g. Construct the
sequence {di}i=0,1,... from R(s) as discussed above. Then the
degree of N denoted by n0 is the positive integer such that
dn0 = 1.

In the following theorem we show the relation of the
nullspace of polynomial matrix and the left coprimeness.

Theorem 3.3: Let B be a behavior represented in minimal
kernel representation form as in equation (3). Let R(s) ∈
Rg×(g+1)[s]. Let M(s) ∈ R(g+1)[s] be such that R(s)M(s) =
0 and deg M(s) = deg N . Then the McMillan degree of
controllable part of B is equal to deg M(s).

Proof: Let R(s)∈Rg×(g+1)[s] be the polynomial matrix
in the minimal kernel representation (3). Construct vector
M(s) ∈ R(g+1)[s] as follows: let R1(s),R2(s), . . . ,Rg+1(s) be
the minors of R(s) such that Ri(s) is obtained from R(s) by
removing ith column. Then construct M(s) as

M(s) =


det R1(s)
−det R2(s)

...
(−1)g detRg+1(s)

 . (7)
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Then R(s)M(s) = 0, that is, M(s) ∈N . Further

deg M(s) = max
i=1,2,...,g+1

deg(det Ri(s)). (8)

We now consider two cases:
Case 1: Consider that B is controllable. This implies that
all the entries in in the vector M(s), that is determinant
polynomials of the minors, are coprime. Hence M(s) is such
that deg M(s) = deg N . This implies that M(s) forms
minimal polynomial basis for the nullspace of R(s). Hence
from equation (8) it is clear that McMillan degree of B is
equal to deg N .
Case 2: Consider that B is not controllable. Then the poly-
nomial matrix R(s) in the minimal kernel representation (3)
can be decomposed as R(s) = A(s)R̃(s) where A(s)∈Rg×g[s]
and R̃(s) ∈Rg×(g+1)[s] is a left coprime matrix. Roots of the
determinant polynomial of A(s) are complex numbers where
R(s) loses rank. R̃(s) corresponds to the controllable part of
the behavior. Further note that the nullspace of R̃(s) is same
as that of R(s) = A(s)R̃(s). Then using similar arguments as
in Case 1 above, we can show that deg N is equal to the
McMillan degree of the behavior corresponding to R̃(s), the
controllable part of B.

We now explain how we compute the nearest uncon-
trollable system to the given system. Let R(s) ∈ Rg×(g+1)

represent a minimal kernel representation of B as in equation
(3). Let B be controllable. Then polynomial matrix R(s)
is left coprime. Then the nearest noncoprime polynomial
matrix to R(s) represents an uncontrollable behavior. In order
to compute the nearest noncoprime polynomial matrix, we
construct the sequence of structured matrices {Xi}i=0,1,...

as described in equation (6). At stage some n0 ∈ N, when
dn0 = 1 from Corollary 3.2 and Theorem 3.3 we know
that McMillan degree of B is n0. We perturb the matrix
Xn0−1 to X̃n0−1 such that X̃n0−1 is rank deficient and has
the same structure as that of Xn0−1. Then the behavior
corresponding R(s) + ∆R(s) obtained from X̃n0−1 will be
uncontrollable. If this perturbation is optimal in the sense
of norm defined in Section II, then we compute the nearest
uncontrollable system to the given controllable system. Note
that, in order to compute the nearest uncontrollable system,
we have used the equivalence of left coprimeness of minimal
kernel representation with the controllability of B. In the
next section, we formulate the SLRA problem formally and
give a numerical algorithm to compute the nearest SLRA.

IV. SLRA: FORMULATION AND ALGORITHM

In this section we first state the problem of computing the
nearest SLRA of a given linearly structured matrix. Then we
formulate the problem of computing the nearest noncoprime
polynomial matrix as the SLRA problem. Finally we discuss
a numerical algorithm to compute the nearest SLRA of a
given matrix.

A. SLRA formulation

Let Ω⊂Rp×q denote the subspace of matrices with a given
structure. Let B = {B1,B2, . . . ,BN} be a basis of Ω. Now we
define SLRA problem as it is defined in [12].

Problem Statement 4.1: Given Ω ⊂ Rp×q, the subspace
of matrices with the given structure, and X ∈ Ω such that
rank(X) = k for k ≤min{p,q}, find a matrix Y such that

min
Y∈Ω,rank(Y )=k−1

‖X−Y‖F .

We now give an algorithm to compute the nearest non-
coprime polynomial matrix to the given polynomial matrix
using the SLRA formulation discussed above. Let R(s) ∈
Rg×(g+1)[s] be a given polynomial matrix with degree n
and normal rank g. Construct the sequence of structured
matrices {Xi}i=0,1,... as in equation (6). Let n0 ∈ N be such
that n0 is the degree of the nullspace N . Consider Xn0−1 ∈
R(n+n0)g×n0(g+1). Let Ω ⊂ R(n+n0)g×n0(g+1) be the subspace
of all the matrices with same structure as that of Xn0−1.
Then we compute the nearest SLRA X̃n0−1 ∈ Ω of Xn0−1.
We construct polynomial matrix R̃(s) from X̃n0−1. R̃(s) is
the nearest noncoprime polynomial matrix.

Algorithm 4.2: Algorithm to Compute nearest noncoprime
polynomial matrix

Input: Polynomial matrix R(s) ∈ Rg×(g+1) of degree
n and normal rank g.

Output: R̃(s), the nearest noncoprime polynomial matrix to
R(s).

Step 1: Compute n0, the degree of N .
Step 2: Construct the structured matrix Xn0−1.
Step 3: Obtain the nearest SLRA X̃n0−1 of Xn0−1.
Step 4: Construct polynomial matrix R̃(s) from X̃n0−1.

In the following subsection we discuss an algorithm to
compute the nearest SLRA of a given linearly structured
matrix based on Structured Total Least Squares (STLS)
approach.

B. An Algorithm to Compute the nearest SLRA

The problem of computing the nearest SLRA of a given
structured matrix is well studied in the literature (see [12],
[13]). Here we adopt the method discussed in [14] to the
structured matrices with the structure as described in Section
III. We explain the Structured Total Least Norm (STLN)
algorithm in this subsection.

We state the following theorem which justifies the formu-
lation of the Structured Total Least Squares (STLS) problem
in the sequel.

Theorem 4.3: Let R(s) ∈ Rg×(g+1)[s] be a given polyno-
mial matrix with degree n. Let n0 be the degree of N ,
the nullspace of R(s). Let X = Xn0−1 ∈ R(n+n0)g×n0(g+1) be
constructed as in Section III. Partition X as X = [A y]
where A ∈ R(n+n0)g×n0(g+1)−1 and y ∈ Rn0(g+1). Then the
polynomial matrix R(s) is not left coprime if and only if
Ax = y has a nontrivial solution for x.

This theorem justifies the partition of the matrix X that
we introduce below. We describe the algorithm for a general
structure where this partition is justified. Let Ω ⊂ Rp×q be
the space of all structured matrices with a given structure.
For a given X ∈ Ω with rank r we need to compute the
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nearest Y ∈Ω with rank r−1. We partition X = [A b], where
A∈Rp×(q−1) and b∈Rp×1. Then the problem of computing
the nearest SLRA can be formulated as

min
H,h,x
‖ [H h]‖F (9)

subject to
(A+H)x = (b+h)

where H ∈Rp×(q−1), h ∈Rp×1 are such that [H h] ∈Ω and
x∈Rq−1. Note that this problem is similar to the Total Least
Squares (TLS) problem with an additional constraint on the
structure of perturbation matrices H and h, hence the name
Structured Total Least Squares (STLS) problem.

Let ∆X = [H h] ∈ Ω. We introduce a vector α =
[α1 α2 · · · αN ]T ∈ RN such that the matrix ∆X is rep-
resented as ∆X = ∑

N
i=1 αiBi. We call α the representation of

∆X . Let P ∈ Rp×N be the matrix of zeros and ones such
that h = Pα . Then the structured minimization problem as
in equation (9) can be stated as follows:

min
α,x
‖Dα‖2 (10)

subject to
r̂ = 0

where the structured residual r̂ = r̂(α,x) = b+Pα−(A+H)x
and D is a positive definite weight matrix. In our case D =
IN and hence we do not consider the weight matrix in the
following discussion. The above problem can be solved using
the penalty method in the following way.

min
α,x
‖
[

ω r̂(α,x)
α

]
‖2, (11)

where ω is a very large positive constant. Typically in
numerical simulations ω is taken in the range of 108 to 1010.
As proposed in [14] we linearize the structured residual as
follows:

r̂(α +∆α,x+∆x) = b+P(α +∆α)
− (A+H +∆H)(x+∆x)

≈ b+Pα +P∆α− (A+H)x
− (A+H)∆x−∆Hx.

Let S ∈ Rp×N be a matrix such that S∆α = ∆Hx. The
structure of S is similar to that of H. The entries in S depend
on the entries of the vector x. Then (11) can be approximated
by

min
∆α,∆x

‖
[

ω(S−P) ω(A+H)
IN 0

][
∆α

∆x

]
+
[
−ω r̂

α

]
‖2 (12)

We now summarize the algorithm.
Algorithm 4.4: STLN Algorithm

Input: Matrices A,b and tolerance ε .
Output: Error matrix ∆X such that ∆X ∈Ω,

vector x and STLN error

Step 1: Choose a large number ω .

Step 2: Set H = 0, h = 0 and compute x from
minx ‖b−Ax‖2 and S from x.

Step 3: Set r̂ = b−Ax.
Step 4: Repeat

(a) Solve the minimization problem in (12).
(b) Set x := x+∆x, α := α +∆α .
(c) Construct [H h] from α and S from x.
(d) Compute r̂ = (b+Pα)− (A+H)x.
until (‖x‖, ‖∆α‖ ≤ ε).

V. NUMERICAL EXAMPLES

In this section we consider examples to illustrate the
algorithm to compute the radius of controllability.

Example 5.1: Let R(s) ∈ R2×3[s] with degree 2 be given
polynomial matrix which represents minimal kernel repre-
sentation of a given behavior. The given behavior is control-
lable.

R(s) = R0 +R1s+R2s2, (13)

where

R0 =
[

2.8996 1.7865 3.5071
−1.8148 −0.0482 0.6056

]
,

R1 =
[

0.3406 −3.1029 4.2961
−4.1005 −0.0499 1.9667

]
,

R2 =
[
−3.8829 −3.5239 0.8279
−3.6371 −4.4503 3.1540

]
.

We construct the sequence of structured matrices and observe
that d4 = 1 is full rank matrix. This proves that the McMillan
degree of the behavior is 4. In order to compute the nearest
uncontrollable system, we obtain the nearest noncoprime
matrix, say Q(s), to R(s). In order to do so, we compute the
nearest SLRA of X3, say X̃3. We use the algorithm that is
discussed in the previous section. The matrix Q(s) obtained
from X̃3 can be written as

Q(s) = Q1 +Q1s+Q2s2, (14)

where

Q0 =
[

2.8875 1.8192 3.5363
−1.8052 −0.0739 0.5826

]
,

Q1 =
[

0.3058 −3.0123 4.3879
−4.0752 −0.1151 1.8976

]
,

Q2 =
[
−4.0446 −3.1042 1.2208
−3.5101 −4.7768 2.8442

]
.

The real radius of controllability rc is given by rc = ‖R(s)−
Q(s)‖∗ = 0.7786 and the complex number λ at which the
matrix Q(λ ) is not full row rank is λ = 3.6639.

Example 5.2: In case of SISO systems, computing the real
radius of controllability is same as computing an approximate
GCD of univariate polynomials. In [6], this fact is used to
compute the nearest uncontrollable system to a given system.
We consider an example given in [6] and obtain the real
radius of controllability. Let R(s) = [a(s) b(s)] where

a(s) = s5 +3.6220s4 +4.7510s3 +2.7450s2 +0.6840s+0.0580

b(s) = −1.6040s5−6.0920s4−8.3810s3−5.1490s2−1.4080s−0.1340
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The radius of controllability rc is equal to 7.5748× 10−4

and the complex number λ at which the system loses
controllability is λ =−0.8904. Our results match with those
given in [6].

VI. CONCLUDING REMARKS

In this paper we considered the problem of computing
the radius of controllability for SIMO systems which are
described using polynomial matrices. The problem of com-
puting the radius of controllability is shown to be equivalent
to computing the nearest noncoprime polynomial matrix to
the matrix describing the system. This problem in turn is
shown to be equivalent to full rank property of some linearly
structured resultant matrix obtained from the polynomial
matrix. Thus the nearest SLRA of this structured resultant
matrix gives the nearest noncoprime matrix and in turn the
radius of controllability. As a particular case of the problem
addressed in this paper, we solve the problem of computation
of approximate GCD of two univariate polynomials.
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