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Abstract— It is well-known that the SCOLE model (a beam
coupled to a rigid body) is not exactly controllable in the energy
state space with L2 input signals, since the control operator is
compact from the input space to state space. In this paper, we
derive its exactly controllable space for L2 input signals and
we prove its well-posedness and regularity in this space.

I. INTRODUCTION

This paper investigates the exact controllability of the
SCOLE (NASA Spacecraft Control Laboratory Experiment)
model with L2 input signals and its well-posedness with the
state space that makes it exactly controllable. The SCOLE
system models a flexible beam with one end clamped and the
other end linked to a rigid body. The inputs of the system are
the force and the torque acting on the rigid body, while the
outputs are the velocity and the angular velocity of the rigid
body. The importance of the SCOLE model stems from it
being used to model the vibrations of a flexible mast holding
an antenna on a spacecraft, see Littman and Markus [5], [6].

Assuming that the beam is uniform and moves only in one
plane, the model is

ρwtt(x, t) + EIwxxxx(x, t) = 0,
(x, t) ∈ (0, l)× [0,∞) ,
w(0, t) = 0 , wx(0, t) = 0 ,
mwtt(l, t)− EIwxxx(l, t) = f(t) ,
Jwxtt(l, t) + EIwxx(l, t) = v(t) ,

(1.1)

where l is the length of the beam, w is its the transverse
displacement, and EI > 0 and ρ > 0 are its flexural rigidity
and mass density. m > 0 and J > 0 are the mass and the
moment of inertia of the rigid body. f and v are the force
input and the torque input acting on the rigid body. We define
the input and output signals of the model as follows:

ue =

[
ue1
ue2

]
=

[
f
v

]
, u =

[
u1

u2

]
=

[
wt(l, ·)
wxt(l, ·)

]
. (1.2)

The natural state and state space of the SCOLE model are

zc(t) =
[
w(·, t) wt(·, t) wt(l, t) wxt(l, t)

]T
, (1.3)

Hc = H2
l (0, l)× L2[0, l]× C2 ,

where H2
l (0, l) = {h ∈ H2(0, l) | h(0) = 0, hx(0) = 0}.

The natural norm on Hc is

‖zc(t)‖2 = EI‖w(·, t)‖2H2
l

+ ρ‖wt(·, t)‖2L2

+m|wt(l, t)|2 + J |wxt(l, t)|2 , (1.4)
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which represents twice the physical energy.
It is well-known that the SCOLE model is not exactly

controllable with the natural energy state space Hc using L2

inputs, since the control operator is bounded from the input
space C2 to Hc, and hence compact. Exact controllability
can be achieved either by expanding the input signal space
(bringing in distributions) or by shrinking the state space.
Here are some results obtained by expanding the input
signal space. Using the Hilbert Uniqueness Method, Rao
[7] obtained the exact controllability of the uniform SCOLE
model with the state space Hc by means of a singular input
signal. He considered f ∈ L2[0, T ] but allowed the torque
input v to be in in the dual of H1(0, T ), where T > 0 is an
arbitrarily short time. He also proved the exact controllability
in arbitrarily short time of the SCOLE model with the state
space Hc by singular torque input (and zero force input) if
l < 3, where all the constants (EI, ρ,m, J) are one. Guo and
Ivanov [3] removed this length limitation and they allowed
the SCOLE model to be non-uniform.

Smaller state spaces have been investigated in at least three
papers. The null-controllability of the SCOLE model with
a state space of type H6(0, l) × H4(0, l) (with boundary
conditions) was proved in Littman and Markus [5] based
on the theory of semi-infinite beams. Using a constructive
cutoff approach, they proved the existence of smooth torque
and force inputs for the finite beam leading to the final state
zero. Using the Riesz basis approach, Guo [2] proved that
the non-uniform SCOLE model with only torque input is
exactly controllable with the state space D(Ac):{[

z
q

]
∈
(
H4 ∩H2

l

)
×H2

l × C2
∣∣∣ q1 = z2(l)
q2 = z2x(l)

}
. (1.5)

Here Ac is the generator of the SCOLE system with the state
space Hc. We suppressed the interval notation (0, l) for the
Sobolev spaces in the above formula. We will do this also
in other places due to the length limitation.

Guo and Ivanov [3] have shown that for the non-uniform
SCOLE model the space D(|Ac| 12 ) is reachable using only
force control. The definition of D(|Ac| 12 ) will be given in
Section 2. So far D(|Ac| 12 ) is the largest known reachable
space using L2 inputs. An explicit description of D(|Ac| 12 )
like in (1.5) has not been given in [3], nor were there well-
posedness results in case we use this space as the state space.

In this paper, using a new approach to the well-posedness
and exact controllability of coupled system developed in
Weiss and Zhao [12], we show that the SCOLE model
described by (1.1) and (1.2) is well-posed, regular and
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exactly controllable in any time T > 0 with the state space

X =

{[
z
q

]
∈ [H3 ∩H2

l ]×H1
l × C2

∣∣ z2(l) = q1

}
using both torque and force control in L2. Here H1

l (0, l) =
{h ∈ H1(0, l) | h(0) = 0}. The system remains regular with
y =

[
−EIwxxx(l,·)
EIwxx(l,·)

]
as an additional output. We suspect that

X = D(|Ac| 12 ), but we did not verify this.

II. BACKGROUND ON CONTROLLABILITY AND COUPLED
SYSTEMS

For the background on admissible control and observation
operators and controllability of infinite-dimensional systems,
we refer to Tucsnak and Weiss [11], and for the background
on coupled systems that is needed here, we refer to Weiss and
Zhao [12]. For easy reference we reproduce below several
well-known results which can be found, e.g., in [11].

We need some preliminaries. Let A be the generator of
a strongly continuous semigroup T on a Hilbert space X .
Then A determines several additional Hilbert spaces: X1 is
D(A) with the norm ‖z‖1 = ‖(βI−A)z‖, X2 is D(A2) with
the norm ‖z‖2 = ‖(βI −A)2z‖, and X−1 is the completion
of X with respect to the norm ‖z‖−1 = ‖(βI − A)−1z‖,
where β ∈ ρ(A) is fixed. The spaces X1, X2 and X−1 are
independent of the choice of β, since different values of β
lead to equivalent norms on X1, X2 and X−1. We have X2 ⊂
X1 ⊂ X ⊂ X−1, densely and with continuous embeddings.
We can continuously extend A to a bounded operator from
X to X−1, still denoted by A. The semigroup generated by
this extended A is the extension of T to X−1, still denoted
by T. If Xd

1 = D(A∗) with the norm ‖z‖d1 = ‖(βI−A∗)z‖,
then X−1 may be regarded as the dual of Xd

1 .
Proposition 2.1: Let H be a Hilbert space and A0 :

D(A0)→H be a strictly positive operator. Denote H 1
2

=

D(A
1
2
0 ) with the graph norm. H− 1

2
is the dual of H 1

2
with

respect to the pivot space H . We define another Hilbert space
X = H 1

2
×H with the inner product〈[
w1

v1

]
,

[
w2

v2

]〉
X

= 〈A
1
2
0 w1, A

1
2
0 w2〉+ 〈v1, v2〉 ,

and another operator A by

A =

[
0 I
−A0 0

]
, D(A) = D(A0)×D(A

1
2
0 ).

Then A is skew-adjoint on X and 0 ∈ ρ(A). Furthermore

X1 = H1 ×H 1
2
, X−1 = H ×H− 1

2
.

If (φk) (k ∈ Λ, Λ countable) is a Riesz basis in the
Hilbert space X , we denote by (φ̃k) (k ∈ Λ) the biorthogonal
sequence to (φk). Every z ∈ X can be represented as
z =

∑
k∈Λ zkφk, where zk = 〈z, φ̃k〉 and (zk) ∈ l2(Λ).

Let T be a diagonalisable semigroup on X with generator
A. This means that there exists a Riesz basis (φk) (k ∈ Λ)
in X such that

Ttz =
∑
k∈Λ

eλktzkφk . (2.1)

The generator of T is given by

Az =
∑
k∈Λ

λk zkφk ,

D(A) =

{
z ∈ X

∣∣∣∣∣ ∑
k∈Λ

|λkzk|2 <∞

}
.

For α ≥ 0 we define

|A|α : D(|A|α)→X

by |A|αz =
∑
k∈Λ

|λk|αzkφk,

D(|A|α) = Xα =

{
z ∈ X

∣∣∣∣∣ ∑
k∈Λ

|λk|2α|zk|2 <∞

}
.

The space Xα is a Hilbert space with the norm

‖z‖α = ‖(I + |A|)αz‖ . (2.2)

We define X−α as the dual of Xα with respect to the pivot
space X . Note that for α = 1 we obtain X1 and X−1 as
defined earlier and |A|α commutes with Tt. It is clear that
T can be extended (or restricted) to Xα for any α ∈ R.
The formula (2.1) for T remains the same, with (|λk|αzk) ∈
l2(Λ). The generator of T acting on Xα is an extension (or
restriction) of A with D(A) = Xα+1 and D(A2) = Xα+2.

In the sequel we recall some results about coupled systems
from our paper [12].

6−

h-
+

- Σf
-

�Σd

ue v u
q

y

z
Fig. 1. A coupled system Σcs consisting of an infinite-dimensional system
Σd and a finite-dimensional system Σf , connected in feedback.

———————

Consider a coupled system Σc, in which an infinite-
dimensional system Σd is connected to a finite-dimensional
system Σf as shown in Figure 1. The external world interacts
with the coupled system Σc via the finite-dimensional part
Σf , which receives the input v = ue − y, where ue is the
input of Σc and the signal y comes from Σd. The system
Σf sends out the output u, which is also the output of the
coupled system Σc. The equations of Σf are{

q̇(t) = aq(t) + bue(t)− by(t), (2.3)
u(t) = cq(t) , (2.4)

where a ∈ Cn×n, b ∈ Cn×m, c ∈ Cm×n, and q(t) ∈ Cn is
the state of the finite-dimensional subsystem at the time t.

X. Zhao and G. Weiss • The Best State Space for the SCOLE Model 

402



Let p be a function defined on some domain in C that
contains a right half-plane, with values in a normed space.
We say that p is strictly proper if

lim
Re s→∞

‖p(s)‖ = 0 , uniformly with respect to Im s.

A linear system is called strictly proper if its transfer function
is strictly proper.

We assume that Σd belongs to an abstract class of infinite-
dimensional systems called strictly proper with an integrator
(SPI) systems, introduced in [12].

Definition 2.2: An SPI system Σd with input space U ,
state space X and output space Y (all Hilbert spaces) is
determined by three operators A,B,C and a transfer function
G, which satisfy the following assumptions:

(a) A is the generator of a strongly continuous semigroup
T on X . The spaces X1, X2 and X−1 are as intro-
duced at the beginning of this section.

(b) B ∈ L(U,X−1) is an admissible control operator for
T.

(c) X2 ⊂ D(C) ⊂ X1 and C : D(C)→Y is such that
its restriction to D(A2) is in L(X2, Y ) and it is an
admissible observation operator for T restricted to X1.

(d) For some (hence, for every) s, β ∈ ρ(A) we have

(sI −A)−1(βI −A)−1BU ⊂ D(C) .

(e) We have G : ρ(A)→L(U, Y ). For every s, β ∈ ρ(A)
we have

G(s)−G(β) = C[(sI −A)−1 − (βI −A)−1]B.

(f) The function 1
sG(s) is strictly proper.

The operators A,B,C are called the semigroup generator,
the control operator and the observation operator of Σd. G
is called the transfer function of Σd.

We make some simple comments on SPI systems. The
dynamic behavior of Σd is assumed to be described similarly
as for a system node (as defined in Staffans [9]):

ż(t) = Az(t) +Bu(t) , y(t) = C&D

[
z(t)
u(t)

]
. (2.5)

Here C&D is defined similarly as for a system node: for
some β ∈ ρ(A),

C&D

[
x
u

]
= C[x− (βI −A)−1Bu] + G(β)u, (2.6)

with the domain D(C&D):{[
x
u

]
∈ X × U

∣∣∣ x− (βI −A)−1Bu ∈ D(C)

}
. (2.7)

For a system node, we would have X1 in place of D(C) in
(2.7), so that for an SPI system, D(C&D) is smaller. It is
easy to see that C&D (and its domain) is independent of the
choice of β appearing in the formulas. It is also easy to see
that we have the following relation between C&D and G:

G(s) = C&D

[
(sI −A)−1B

I

]
∀ s ∈ ρ(A) . (2.8)

The equations (2.5) have classical solutions if u is of class
H2

loc and the initial conditions of z and u are compatibe. In
this case, y is continuous.

Now consider the situation when Σd is an SPI system with
input and output space Cm and state space Hd, semigroup T
and transfer function G. We can consider the coupled system
Σc as a cascaded system Σcasc (the open loop system in
Figure 2) with a feedback. The input of Σcasc is v from
Figure 1, and its outputs are u and y. The system Σcasc is
described by: 

q̇(t) = aq(t) + bv(t) , (2.9)
u(t) = cq(t) , (2.10)
ż(t) = Az(t) +Bu(t) , (2.11)

y(t) = C&D

[
z(t)
u(t)

]
. (2.12)

Here z(t) is the state of Σd, so that z(t) ∈ Hd.

- Σf
- Σd

-
v u y

Fig. 2. A cascaded system Σcasc consisting of an infinite-dimensional
system Σd and a finite-dimensional system Σf = (a, b, c).

———————

It is easy to show that the above equations (2.9)–(2.11)
give rise to a strongly continuous semigroup S on the state
space Hd × Cn, whose generator A is given by

A =

[
A Bc
0 a

]
,

D(A) =

{[
z
q

]
∈ Hd × Cn

∣∣∣∣ Az +Bcq ∈ Hd

}
. (2.13)

In fact, Hd × Cn is not a good choice for the state space
of Σcasc, because it is too large and the system may not be
well-posed with this state space. However, we have shown
in [12] that Σcasc (and also Σc) is a well-posed system with
the state space X = D(A), which is a Hilbert space with
the graph norm of A.

For the well-posedness and controllability of the coupled
system Σc, we have the following theorem from [12]:

Theorem 2.3: Let Σd be an SPI system described by
(2.11)-(2.12), with input space Cm, state space Hd, output
space Cm, semigroup generator A, control operator B,
observation operator C and transfer function G. Let a, b, c be
matrices as in (2.3)-(2.4). Then the coupled system Σc from
Figure 1 described by (2.3), (2.4), (2.11) and (2.12), with
input ue, state [ zq ] and output u, is well-posed with the state
space X = D(A) from (2.13). The coupled system remains
well-posed also with y as an additional output. Moreover,
Σc is regular, with feedthrough operator zero.

The semigroup of Σc, denoted by Sc, is generated by

Ac
[
z
q

]
=

[
Az +Bcq

aq − b[C&D] [ zcq ]

]
,
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D(Ac) =

{[
z
q

]
∈ X

∣∣∣∣ Ac [zq
]
∈ X

}
.

If C ∈ L(Hd
1 ,C

m), then the operators Sct can be extended
to form a strongly continuous semigroup on the space Hd×
Cn. The generator of this extension, denoted by Ãc, is given
by the same formula as Ac but it has the larger domain
D(Ãc) = X .

Now assume additionally the following:
(i) (A,B) is exactly controllable in time T0;
(ii) (a, b) is controllable;
(iii) cb ∈ Cm×m is invertible;
(iv) Denote a×(β) = a+b(cb)−1c(βI−a). There exists β ∈
ρ(A) such that A∗ and a×(β)∗ have no common eigenvalue.

Then Σc is exactly controllable in any time T > T0 (on
the state space X ).

III. SOME BACKGROUND ON BOUNDARY CONTROL
SYSTEMS

This section is an introduction to boundary control sys-
tems, without any well-posedness assumptions. For proofs
and more details we refer to Tucsnak and Weiss [11]. The
general theory of such systems started with Fattorini [1] and
it was significantly developed by Salamon [8].

Systems described by linear partial differential equations
with non-homogeneous boundary conditions often appear in
the following, quite different looking form:

ż(t) = Lz(t) , Gz(t) = u(t) , y(t) = Kz(t) . (3.1)

Often (but not necessarily) L is a differential operator and
G is a boundary trace operator. We assume that U,Z,X and
Y are complex Hilbert spaces such that

Z ⊂ X ,

with continuous embedding. We call U the input space, Z
the solution space, X the state space and Y the output space.

Definition 3.1: A boundary control system on U,Z,X
and Y is a triple of operators Σb = (L,G,K), where

L ∈ L(Z,X) , G ∈ L(Z,U) , K ∈ L(Z, Y ) ,

if there exists a β ∈ C such that the following holds:
(i) G is onto,
(ii) Ker G is dense in X ,
(iii) βI − L restricted to Ker G is onto,
(iv) Ker (βI − L) ∩Ker G = {0}.
Three operators in this definition determine a system via

the equations (3.1). With the assumptions of the last defini-
tion, we introduce the Hilbert space X1 and the operator A
by

X1 = Ker G , A = L|X1
. (3.2)

Obviously, X1 is a closed subspace of Z and A ∈ L(X1, X).
Condition (iii) means that βI − A is onto. Condition (iv)
means that Ker (βI−A) = {0}. Thus, (iii) and (iv) together
imply that β ∈ ρ(A), so that

(βI −A)−1 ∈ L(X) .

In fact, (βI −A)−1 ∈ L(X,X1), so that the norm on X1 is
equivalent to the norm

‖z‖1 = ‖(βI −A)z‖ ,

which in turn is equivalent to the graph norm of A. We define
the Hilbert space X−1 as the completion of X with respect
to the norm

‖z‖−1 = ‖(βI −A)−1z‖ .

It is easy to see that this space is independent of the choice
of β ∈ ρ(A).

Proposition 3.2: Let Σb = (L,G,K) be a boundary
control system on U,Z,X and Y . Let A and X−1 be
as introduced earlier. Then there exists a unique operator
B ∈ L(U,X−1) such that

L = A+BG , (3.3)

where A is regarded as an operator from X to X−1. For
every β ∈ ρ(A) we have that (βI −A)−1B ∈ L(U,Z) and

G(βI −A)−1B = I , (3.4)

so that in particular, B is bounded from below.
For the proof see Tucsnak and Weiss [11, Proposition

10.1.2].
Remark 3.3: The following fact is an easy consequence

of Proposition 3.2: For every v ∈ U and every β ∈ ρ(A),
the vector z = (βI −A)−1Bv is the unique solution of the
“abstract elliptic problem”

Lz = βz , Gz = v .
Definition 3.4: With the notation of Definition 3.1 and

Proposition 3.2, we define C ∈ L(X1, Y ) as the restriction
of K to X1. Then the generating triple of Σb is (A,B,C).
The transfer function of Σb is the L(U, Y )-valued function
G defined on ρ(A) by the formula

G(s) = K(sI −A)−1B . (3.5)
By the resolvent identity, for any s, β ∈ ρ(A), the

difference (sI −A)−1− (βI −A)−1 maps X−1 into X1, so
that (3.5) implies

G(s)−G(β) = C
[
(sI −A)−1 − (βI −A)−1

]
B. (3.6)

It is now clear that if A is the generator of a strongly
continuous semigroup on X , then A,B,C and G determine
a system node in the sense of Staffans [9].

Remark 3.5: As a consequence of Proposition 3.2, the first
two equations in (3.1) can be rewritten equivalently as a
single equation, namely

ż(t) = Az(t) +Bu(t) , with ż(t) ∈ X . (3.7)

IV. THE BEAM SUBSYSTEM ON THE ENERGY STATE
SPACE

To obtain the well-posedness and exact controllability
results for the SCOLE model Σc described by (1.1) and (1.2),
we follow the framework of Theorem 2.3. We decompose Σc
into an infinite-dimensional system Σd (the clamped flexible
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beam) coupled with a finite-dimensional system Σf (the rigid
body). We model and analyse the beam subsystem first.

The clamped flexible beam Σd that we extract from Σc
is described by the following Euler-Bernoulli equation with
boundary control and boundary observation:

ρwtt(x, t) + EIwxxxx(x, t) = 0,
(x, t) ∈ (0, l)× [0,∞) ,
w(0, t) = 0 , wx(0, t) = 0 ,
wt(l, t) = u1(t) , wxt(l, t) = u2(t),
y1(t) = − EIwxxx(l, t) ,
y2(t) = EIwxx(l, t) ,

(4.1)

where u = [ u1
u2

] is the input of Σd (the transverse velocity
and angular velocity of the nacelle). y = [ y1y2 ] is the output
of Σd (the force and the torque at the top of the tower). The
other notation is as in (1.1).

In order to reformulate the system Σd as a boundary
control system like (3.1), we use the auxiliary functions,
which are the first two variables of zc in (1.3):

z1(x, t) = w(x, t), z2(x, t) = wt(x, t). (4.2)

Then (4.1) can be written as:

ż1(x, t) = z2(x, t),
ż2(x, t) = − EI

ρ z1xxxx(x, t),

z1(0, t) = 0, z1x(0, t) = 0,
z2(l, t) = u1(t), z2x(l, t) = u2(t),
y1(t) = − EIz1xxx(l, t),
y2(t) = EIz1xx(l, t).

(4.3)

We denote z = [ z1z2 ], and similarly for u and y. The natural
state space of Σd is

X = H2
l (0, l)× L2[0, l] ,

where H2
l (0, l) is defined as after (1.3). We define the norm

on X as follows:

‖z‖2 = EI‖z1‖2H2
l

+ ρ‖z2‖2L2 , (4.4)

where

‖z1‖2H2
l

=

∫ l

0

|z1xx|2dx, ‖z2‖2L2 =

∫ l

0

|z2|2dx. (4.5)

The physical energy in the system Σd is 1
2‖z‖

2.
We introduce the space Z ⊂ X by

Z =
[
H4(0, l) ∩H2

l (0, l)
]
×H2

l (0, l) . (4.6)

We define the operators L : Z→X , G,K : Z→C2 by

L =

[
0 I

−EIρ
d4

dx4 0

]
, G

[
z1

z2

]
=

[
z2(l)
z2x(l)

]
,

K

[
z1

z2

]
=
[
−EIz1xxx(l)EIz1xx(l)

]
.

With the above notation, (4.3) can be written as follows:

ż = Lz, Gz = u, y = Kz . (4.7)

Such equations determine a boundary control system if L,
G and K satisfy certain conditions, see Section III. Now we

prove that this is indeed the case. Before we do this, we
introduce the system operator by A = L|Ker G. It is easy to
verify that

D(A) = Ker G =
[
H4(0, l) ∩H2

l (0, l)
]
×H2

0(0, l) (4.8)

whereH2
0(0, l) = {h ∈ H2(0, l) | h(0) = h(l) = 0, hx(0) =

hx(l) = 0}. The norm on H2
0(0, l) is defined by ‖f‖H2

0
=

‖f ′′‖L2 .
Proposition 4.1: The beam system (L,G,K) is a bound-

ary control system.
Proof. It is clear that G is onto. The space Ker G is dense

in X because H4(0, l) ∩ H2
l (0, l) is dense in H2

l (0, l), and
H2

0(0, l) is dense in L2[0, l]. The last two conditions in the
definition of a boundary control system are equivalent to the
fact that sI −A is invertible for some s ∈ C. We show that
for every s > 0, sI − A is invertible, or equivalently, for
every q ∈ X , the following equation has a unique solution
z ∈ D(A):

(sI −A)z = q .

The above equation is equivalent to
EI
ρ z1xxxx + s2z1 = sq1 + q2,

z1(0) = 0, z1x(0) = 0,
z1(l) = 1

sq1(l), z1x(l) = 1
sq1x(l),

z2 = sz1 − q1 .

(4.9)

Remember that s > 0. First we show that the corresponding
homogeneous equation, where we replace sq1+q2 in the first
equation of (4.9) with zero but leave the other equations
unchanged, has a unique solution zh = [ zh1

zh2
] ∈ D(A).

Solving this homogeneous equation, we get

zh1(x) =c1 coshmx sinmx− c1 sinhmx cosmx

+ c2 sinhmx sinmx,

and zh2 = szh1 − q1, where

m =
s

2

√
ρ

EI
, c1 =

d · q2(l)− bm · q1(l)

(ad− bc)ms
,

c2 =
am · q1(l)− c · q2(l)

(ad− bc)ms
, a = 2 sinhml sinml,

b = sinhml cosml + coshml sinml,

c = coshml sinml − sinhml cosml, d = sinhml sinml.

The above solution only makes sense if ad− bc 6= 0. Since
ad − bc = sinh2(ml) − sin2(ml) and sinhα > | sinα| for
any α > 0, we obtain that ad− bc > 0, so that zh exists and
it is unique.

Similarly it can be shown that the non-homogeneous
equation corresponding to (4.9), where we replace q1(l)
and q1x(l) with zero, has a solution zn ∈ D(A). Hence
z = zh + zn is a solution of (4.9). z is unique because if
(4.9) had another solution z̃, then z− z̃ would be a solution
of the homogeneous equation with zero boundary conditions
(which is 0), hence z− z̃ = 0. Therefore sI−A is invertible
for s > 0.

Since sI−A is invertible for s > 0, we can introduce the
space X−1 as the completion of X with respect to the norm
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‖x‖−1 = ‖(sI − A)−1x‖. We can extend A to a bounded
operator from X to X−1, still denoted by A. We know from
Section III that there exists a unique B : C2→X−1 such that
L = A+BG. According to Remark 3.5, the state trajectories
of Σd from (4.1) or (4.7) satisfy (3.7).

We decompose the state space X into 2 parts: the null-
space of A, Xn, and its orthogonal complement Xr. By a
simple computation, we get

Xn = Ker A =

{[
ax3 + bx2

0

] ∣∣∣∣ a, b ∈ C
}
. (4.10)

Now we determine Xr = X⊥n . Let z = [ z1z2 ] ∈ Xr, then
z1 ∈ H2

l (0, l), z2 ∈ L2[0, l]. The condition 〈q, z〉 = 0 for
all q ∈ Xn is equivalent to 〈q1, z1〉H2

l
= 0 for all q1 of the

form

q1(x) = ax3 + bx2, where a, b ∈ C . (4.11)

For q1 as above and for every h ∈ H2
l (0, l) we have, using

twice integration by parts,

〈q1, h〉H2
l

= q1xx(l)·hx(l)−
[
q1xxx · h

]l
0
+

∫ l

0

q1xxxx ·hdx.

Using that q1xxxx = 0 and h(0) = 0, we get

〈q1, h〉H2
l

= q1xx(l) · hx(l)− q1xxx(l) · h(l) .

Therefore we have for z1 in place of h, q1xx(l) · z1x(l)−
q1xxx(l) ·z1(l) = 0. Clearly q1xx(l) and q1xxx(l) can be any
complex numbers (in fact q1xx(l) = 6al + 2b and q1xxx =
6a). Thus 〈q1, z1〉 = 0 for all q1 as in (4.11) is equivalent to

z1(l) = 0 , z1x(l) = 0 .

Therefore z1 ∈ H2
0(0, l), where H2

0(0, l) is defined as after
(4.8). Thus we get

Xr = H2
0(0, l)× L2[0, l] .

We denote by Ar the restriction of A to Xr. Then

D(Ar) =
[
H4(0, l) ∩H2

0(0, l)
]
×H2

0(0, l) .

It is easy to see that Xr is invariant under A, or equivalently,
Arz ∈ Xr, ∀z ∈ D(Ar). We can decompose

Ar =

[
0 I
−A0 0

]
, (4.12)

where

A0h =
EI

ρ
hxxxx, D(A0) = H4(0, l)∩H2

0(0, l) . (4.13)

Note that Ar corresponds to the equations of a beam clamped
at both ends.

Proposition 4.2: A0 is a strictly positive densely defined
operator on H = L2[0, l], with compact resolvents. We have
D(A

1
2
0 ) = H2

0(0, l).
For a proof see, e.g., [11, Example 3.4.13]. This implies

that σ(A0) consists of isolated positive eigenvalues, which
converge to ∞. Moreover, there exists in H an orthonormal
basis consisting of eigenvectors of A0 (see, e.g., [11, Propo-
sition 3.2.12]).

Proposition 4.3: Ar is skew-adjoint on Xr and A is skew-
adjoint on X .
Proof. As A0 > 0, according to Proposition 2.1 Ar is
skew-adjoint on Xr and 0 ∈ ρ(Ar). According to the
decomposition X = Xn ⊕ Xr into A−invariant subspaces,
it follows that A is skew-adjoint on X .

We define C = K|Ker G, so that C =
[
C1

C2

]
, where for all

h =
[
h1

h2

]
∈ Ker G

C1h = − EIh1xxx(l), C2h = EIh1xx(l) . (4.14)

Proposition 4.4: B∗ = C.
For the proof, please see the journal version of this paper,

Zhao and Weiss [13].

Remark 4.5: If q1, q2 ∈ C, then the vector
[
g1

g2

]
= (I −

A)−1B

[
q1

q2

]
is the unique solution of the “abstract elliptic

problem” from Remark 3.3:

(I − L)

[
g1

g2

]
= 0 , G

[
g1

g2

]
=

[
q1

q2

]
.

As remarked after Definition 3.4, propositions 4.1 and
4.3 imply that the beam system Σd is a system node with
state space X , skew-adjoint semigroup generator A, control
operator B and observation operator C = B∗. However this
system node is not an SPI system because B is not admissible
on the state space X , see [13] for the proof. Thus, in order
to use Theorem 2.3, we have to extend the state space.

V. THE BEAM SUBSYSTEM WITH STATE SPACE X− 1
2

In the sequel, we suppress the notation (0, l) of the
standard Sobolev spaces Hm(0, l) and Hm0 (0, l). Hm0 is
defined similarly as after (4.8). We need three theorems about
interpolation spaces. The following two theorems are taken
from Lions and Magenes [4, p. 43, 64]:

Theorem 5.1: Let s1 > s2, s1 > 0, 0 < θ < 1. We have
(with equivalent norms)

[Hs1 , Hs2 ]θ = H(1−θ)s1+θs2 .
Here, [Hs1 , Hs2 ]θ denotes the θ-interpolation of Hs1 and
Hs2 (see [4] for the definition).

Theorem 5.2: Let s1 > s2 ≥ 0, s1 and s2 6= integer + 1
2 .

If (1− θ)s1 + θs2 6=
integer + 1

2 , then

[Hs10 , H
s2
0 ]θ = H(1−θ)s1+θs2

0

(with equivalent norms).
Actually, in [4] the above results are given for a more

general n-dimensional domain. The following theorem is
taken from Triebel [10, p. 118].

Theorem 5.3: Let Za, Zb be Banach spaces such that
{Za, Zb} is an interpolation couple. Let V be a comple-
mented subspace of Za + Zb whose projection P restricted
to Za is a bounded operator on Za, and similarly on Zb.

Let 0 < θ < 1. Then {Za ∩ V,Zb ∩ V } is also an
interpolation couple, and

[Za ∩ V,Zb ∩ V ]θ = [Za, Zb]θ ∩ V.
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Recall from (4.13) that A0 : D(A0)→H is a strictly
positive operator on H = L2[0, l]. Denote Hα = D(Aα0 )
(α ≥ 0) with the graph norm. H−α is the dual of Hα with
respect to the pivot space H . From (4.12) and Propositions
4.2 and 2.1 we know that

H1 = H4 ∩H2
0 , H 1

2
= H2

0 , Xr = H 1
2
×H ,

(Xr)1 = D(Ar) = D(A0)×D(A
1
2
0 ) = H1 ×H 1

2
, (5.1)

(Xr)−1 = H ×H− 1
2
. (5.2)

According to Theorem 5.2 with s1 = 2, s2 = 0, θ = 1
2 , we

have
H 1

4
= [H,H 1

2
] 1
2

= [L2,H2
0] 1

2
= H1

0 . (5.3)

Note that (by definition) the dual of H1
0 with respect to L2

is H−1, i.e.
H− 1

4
= H−1 . (5.4)

Recall from Section IV that X = H2
l × L2 = Xn ⊕Xr,

where dimXn = 2, the spaces Xα = D(|A|α) (for α > 0)
were introduced before (2.2), X−α is the dual of Xα with
respect to the pivot space X , and H1

l is defined as at the end
of Section I.

Proposition 5.4: X− 1
2

= H1
l ×H−1.

Proof. Let φk be the eigenvectors of Ar, then[
A

1
2
0 0

0 A
1
2
0

]
φk = λ

1
2

k φk = |µk|φk = |Ar|φk ∀k ∈ Z∗ .

Thus we get

|Ar| =

[
A

1
2
0 0

0 A
1
2
0

]
, hence |Ar|

1
2 =

[
A

1
4
0 0

0 A
1
4
0

]
.

Therefore

(Xr) 1
2

=
{
z ∈ Xr

∣∣∣ |Ar| 12 z ∈ Xr

}
= H 3

4
×H 1

4
. (5.5)

By definition (Xr)− 1
2

is the dual of (Xr) 1
2

= H 3
4
× H 1

4

with respect to Xr = H 1
2
× H . Combining this fact with

equations (5.3) and (5.4), we have

(Xr)− 1
2

= H 1
4
×H− 1

4
= H1

0 ×H−1 .

Therefore we have

X− 1
2

= Xn ⊕ (Xr)− 1
2

=

{[
ax3 + bx2

0

] ∣∣∣∣ a, b ∈ C
}
⊕
(
H1

0 ×H−1
)

= H1
l ×H−1.

Proposition 5.5: X 1
2

= (H3 ∩H2
l )×H1

0 .
Proof. From Theorem 5.1 with s1 = 4, s2 = 2 and θ = 1

2
we know that

[H4,H2] 1
2

= H3 .

From this and Theorem 5.3 (with Za = H4, Zb = H2 and
V = H2

0), we get

[H4 ∩H2
0,H2

0] 1
2

= [H4,H2] 1
2
∩H2

0 = H3 ∩H2
0 .

Therefore

H 3
4

= [H1, H 1
2
] 1
2

= [H4 ∩H2
0,H2

0] 1
2

= H3 ∩H2
0 . (5.6)

Substituting (5.6) and (5.3) into (5.5), we get

(Xr) 1
2

= (H3 ∩H2
0)×H1

0 .

Therefore we have

X 1
2

= Xn ⊕ (Xr) 1
2

=

{[
ax3 + bx2

0

] ∣∣∣∣ a, b ∈ C
}
⊕
(

(H3 ∩H2
0)×H1

0

)
.

A simple reasoning shows that by adding functions of the
form ax3 + bx2 to H3 ∩ H2

0, we get H3 ∩ H2
l . From here,

the proposition follows.
Proposition 5.6: Let T be the semigroup generated by A

on X , as introduced in Section IV. If we extend T to X− 1
2

,
then its generator is an extension of A (still denoted by A)
with D(A) = X 1

2
and D(A2) = X 3

2
.

Indeed, this follows from what we said after (2.2). If we
take Hd = X− 1

2
as the state space, we get the following

results (see [13] for the proof):
Proposition 5.7: B is admissible for T on the state space

X− 1
2

and (using this state space) and the pair (A,B) is
exactly controllable in any time T0 > 0.

Proposition 5.8: The beam subsystem is an SPI system
with state space Hd = X− 1

2
.

VI. WELL-POSEDNESS, REGULARITY AND EXACT
CONTROLLABILITY OF THE SCOLE MODEL

The rigid body system Σf that we extract from the SCOLE
model Σc (see (1.1) and (1.2)) is described by the following
Newton-Euler equations with control and observation: q̇1 = − 1

my1 + 1
mf,

q̇2 = − 1
J y2 + 1

J v,
u1 = q1 , u2 = q2 .

(6.1)

For this system, the state is q = [ q1q2 ] =
[
wt(l,t)
wxt(l,t)

]
, which

is the last two components of zc in (1.3). The inputs are
f − y1 and v − y2. u = [ u1

u2
] is the output of both Σf and

Σc. It is easy to see that this system is a particular case of
the finite-dimensional subsystem in Theorem 2.3 with a = 0,
b =

[
1
m 0

0 1
J

]
(using both torque and force control) and c = I .

It is clear that (a, b) is controllable.
Theorem 6.1: The SCOLE model Σc described by (1.1)

and (1.2) is well-posed, regular, and exactly controllable in
any time T > 0 with the state space

X =

{[
z
q

]
∈
[
H3 ∩H2

l

]
×H1

l × C2
∣∣ z2(l) = q1

}
when using both torque and force control in L2. It remains
regular with y = [ y1y2 ] from (4.1) as an additional output.

Proof. From Proposition 5.8 we know that the beam
subsystem Σd is an SPI system with state space Hd = X− 1

2
.

From the descriptions of Σc, Σd and Σf , it is clear that
they fit into the framework of Theorem 2.3. Therefore, by
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Theorem 2.3, Σc (with input ue and output [ uy ]) is well-posed
and regular with the state space

X = D(A) =

{[
z
q

]
∈ X− 1

2
× C2

∣∣∣∣ Az +Bcq ∈ X− 1
2

}
,

where A is the generator of the cascaded system in the state
space X− 1

2
× C2.

From Proposition 5.7 we also know that Σd is exactly
controllable in any time T0 > 0 with the state space
Hd = X− 1

2
using both velocity and angular velocity control.

Thus assumption (i) of Theorem 2.3 is satisfied. From the
beginning of this section, we know that (a, b) is controllable,
so that assumption (ii) of Theorem 2.3 is satisfied. Since
cb =

[
1
m 0

0 1
J

]
is invertible, assumption (iii) is also satisfied.

As
a×(β) = βI, β ∈ ρ(A) ,

we know that a×(β)∗ and A∗ have no common eigenvalues,
which is assumption (iv). So far all the assumptions of
Theorem 2.3 are satisfied. Thus the coupled system Σc is
exactly controllable in any time T > 0 with the state space
X .

Now we determine X . Recall that c = I . Take z ∈ X− 1
2

and q ∈ C2. The fact that Az +Bq ∈ X− 1
2

is equivalent to
(A− I)z +Bq ∈ X− 1

2
, which is equivalent to

z − (I −A)−1Bq ∈ X 1
2
.

Thus X is{[
z
q

]
∈ X− 1

2
× C2

∣∣∣∣ z − (I −A)−1Bq ∈ X 1
2

}
. (6.2)

Take
[
z
q

]
∈ X . Let γ =

[
γ1

γ2

]
∈ X 1

2
be such that

z = γ + (I −A)−1Bq .

Define
[
g1

g2

]
= (I −A)−1B

[
q1

q2

]
. It is clear that

[
g1

g2

]
∈ X ,

which means that g1(0) = 0 and g1x(0) = 0. According to
Remark 4.5, g1, g2 are the solution of

g1 − g2 = 0 , (6.3)
g1xxxx + g2 = 0, (6.4)
g2(l) = q1 , g2x(l) = q2 , (6.5)

which is equivalent to g2 = g1 and g1xxxx + g1 = 0 subject
to g1(l) = q1, g1x(l) = q2, g1(0) = 0 and g1x(0) = 0. Thus,
g1 is the solution of a fourth order ODE with four boundary
conditions. It is easy to see that

g1 = g2 ∈ C∞[0, l] ⊂ H3 .

Combing this fact, the boundary conditions of g1 and Propo-
sition 5.5, we get that

z ∈
[
H3(0, l) ∩H2

l (0, l)
]
×H1

l .

From Proposition 5.5 we know that γ2(l) = 0. Hence, from
equation (6.5) z2(l) = g2(l) = q1. Thus, we have proved
that

X ⊂
{[
z
q

]
∈ [H3 ∩H2

l ]×H1
l × C2

∣∣ z2(l) = q1

}
. (6.6)

Now we prove the reversed inclusion. Take[
z
q

]
∈
{[
z
q

]
∈ [H3 ∩H2

l ]×H1
l × C2

∣∣ z2(l) = q1

}
.

Consider z − (I − A)−1Bq =

[
z1

z2

]
−
[
g1

g2

]
, where

[
g1

g2

]
is

the solution of (6.3)-(6.5). So g1 = g2 ∈ C∞[0, l] ⊂ H3. We

also know that
[
z1

z2

]
∈ [H3(0, l) ∩ H2

l (0, l)] × H1
l (0, l) and

z2(l) = q1. Combing these facts with equation (6.5), we get(
z−(I−A)−1Bq

)
∈ [H3(0, l)∩H2

l (0, l)]×H1
0(0, l) = X 1

2
.

We know that [H3(0, l)∩H2
l (0, l)]×H1

l (0, l) ⊂ X− 1
2

. From

(6.2) it is now clear that
[
z
q

]
∈ X , i.e, the reversed inclusion

of (6.6) holds.
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